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ABSTRACT
This paper proposes a new architecture that strategically harvests

the untapped compute capacity of the SmartNICs to offload transient
microservices workload spikes, thereby reducing the SLA violations
while providing better performance/energy consumption. This is
particularly important for ML workloads at Edge deployments with
stringent SLA requirements. Usage of the untapped compute capac-
ity is more favorable than deploying extra servers, as SmartNICs are
economically and operationally more desirable. We propose Spike-
Offload, a low-cost and scalable platform that leverages machine
learning to predict the spikes and orchestrates seamless offloading
of generic microservices workloads to the SmartNICs, eliminating
the need for pre-deploying expensive host servers and their under-
utilization. Our SpikeOffload evaluation shows that SLA violations
can be reduced by up to 20% for specific workloads. Furthermore,
we demonstrate that for specific workloads our approach can poten-
tially reduce capital expenditure (CAPEX) by more than 40%. Also,
performance per unit energy consumption can be improved by upto
2×.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Networks →
Network performance analysis; Programming interfaces.
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1 INTRODUCTION
The growth of edge-computing systems is being driven by ma-

chine learning solutions and applications requiring high perfor-
mance and low latency, such as Internet-of-Things (IoT), manu-
facturing, and other operational technologies. Furthermore, edge
applications are increasingly adopting microservices frameworks, in-
cluding serverless. However, provisioning at the edge for additional
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computing needs on an ephemeral basis for sudden workload spikes,
or as we call it transient elasticity, is non-trivial [1, 2], especially for
ML inferencing workloads. Scaling microservice applications at the
edge poses critical challenges. Service-level agreement (SLA) viola-
tions typically occur due to workload bursts leading to short-term
compute power shortages on the edge servers [3]. Since SLA vio-
lations for ML workloads carry severe penalties, one common way
to eliminate violations is to over-allocate resources preemptively.
This leads to long refresh cycles and under-utilization of expensive
resources. Meanwhile, SmartNICs (smart network interface cards)
are gaining popularity. They are being increasingly deployed for
offloading various network functions and provide real-time line rate
at scale [4, 5]. However, the additional general-purpose compute ca-
pacity available on these SmartNICs has largely been untapped. We
propose SpikeOffload, a novel Edge-Computing platform that lever-
ages heterogeneous-computing nodes (including domain-specific
accelerators (DSA) like SmartNICs) to acquire appropriate compu-
tation resources to handle the workload and transient spikes. We
predict the possibility of incoming workload spikes and intelligently
load-balance containerized workloads across the heterogeneous-
compute resources, including untapped general-purpose, compute
on SmartNICs when demand escalation is imminent. We demon-
strate SpikeOffload using Serverless workloads (more in Sec. 2.3) as
they are low compute-intensive workloads that are ideal for limited
resource DSAs like SmartNICs. SmartNICs are desirable candidates
for serverless application offload because (1) they are closer to the
data ingress-side and bypass the network stack overhead, (2) there is
availability and proximity of SoC-based general-purpose compute
to the server for application processing [6, 7], (3) from our analysis,
we observe close to 30% unused compute cycles on the SmartNICs
that can be re-purposed for non-networking workloads, and (4) they
eliminate the costly need to provision traditional servers for transient
compute requirements. To the best of our knowledge, we are the
first to offload containerized non-networking workloads such as ML
inferencing to SoC-based SmartNICs.

Although prior works have studied the applicability of offloading
specific parts of applications, e.g., using P4 programmability, actor-
programming paradigm, etc., [8–10], these works are limited to
specific applications and require code modification for other types
of workload/application offloading. However, our work, by virtue
of offloading the entire container into the SmartNIC, is application-
agnostic and can be used for any containerized application. As we
describe later in the paper, such offloading is of particular interest
for ML workloads with strict SLA requirements at the Edge.

SpikeOffload’s orchestrator can be generalized for scaling edge
across multiple servers and different kinds of SmartNICs. Stated
otherwise, our approach can scale application offload across different
dimensions of heterogeneity. This approach enables us to secure
a competitive advantage compared to current homogeneous edge
architectures and deployments. To this end, this paper makes the
following main contributions:
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• Designing a novel architecture that leverages heterogeneous com-
puting nodes (SmartNICs and Host server) to facilitate efficient
handling of spikes in processing demand at the edge;

• Development and characterization of workload predictor and or-
chestrator that work in tandem to reduce SLA violations while
efficiently handling workload spikes;

• Characterization of competitive advantages of our architecture
through an in-depth analysis of capital expense costs and over-
head savings from reducing SLA violations. Our examination
demonstrates that capital expenditure can be reduced by more
than 40%, while performance/energy consumption can be tuned
up by a factor of 2. In addition, our architecture reduces SLA
violations by as much as 20%.

2 BACKGROUND AND MOTIVATION
In this section, we provide the background and motivation for

SpikeOffload, with an overview of multicore SoC-based SmartNICs,
and the need for DSA such as SmartNICs in the Edge Computing
platform. In addition, we also briefly discuss an overview of the
Serverless Platform and how they integrate into edge computing
use-cases such as ML inference.

2.1 Network Accelerators: SmartNICs
SmartNICs are domain-specific accelerators, specifically advan-

tageous for Networking functionalities. There are broadly three
categories of network accelerators or SmartNICS: ASIC, FPGA,
and SoC-based SmartNICs [9, 11]. In this study, we only focus
on SoC-based SmartNICs. Multicore SoC-based SmartNICs use
embedded CPU cores to process packets, trading performance to
provide substantially better programmability than ASIC-based de-
signs. (e.g., DPDK-style code can be directly run on a familiar Linux
environment). For instance, Mellanox Bluefield [6] uses general-
purpose CPU cores (ARM64), while others, like Netronome [12],
have specific cores for network processing.

SoC-based SmartNICs (e.g., Mellanox) have two modes of opera-
tion: Embedded, and Separated modes. The interfaces are mapped
to the host OS network stack in embedded mode, and the kernel
routes packets from the host. The host OS and the SmartNIC have
separate, independent network stacks to process packets in the sep-
arated mode. While we observe slightly better tail-latencies from
packet processing in embedded mode, the offset from separate mode
is negligible. For SpikeOffload, we adopt the separated mode due to
its programmable flexibility and the ability to run containers directly
on the SmartNIC’s ARM64 OS. We observe that the recent versions
of SmartNICs can support containers with many network restrictions.
Our hope is SpikeOffload, can work with both modes with more
improvements from the vendor in the underlying hardware or by
providing the compatible container network interface (CNI).

2.2 Need for Accelerators at the Edge
Recently, there has been much interest in using SmartNICs in

cloud data center servers to boost performance by offloading com-
putation in servers by enhancing network datapath processing. This
section explains why SmartNICs are essential in the new generation
of high-performance edge computing servers. The cost of building

an interconnection network for a large edge cluster with cloud sup-
port can significantly affect the choice of design decisions. With
increasing network interface bandwidths, the gap between the net-
work performance and compute performance is widening. This has
resulted in increased adoption and deployment of SmartNICs [5].
If SmartNICs were leveraged to offload only network functionali-
ties, it would add 30% more computational capacity to the current
servers [13]. Typically, SoC-based SmartNICs are generally priced
at 25-30% the cost of high-performance edge Servers. Therefore,
adding a SmartNIC to perform only network functions is a wise
decision. However, the SmartNICs can do more than network func-
tions. The compute capacity of an SoC-based SmartNIC is generally
around 40-50% of server compute capacity as per our initial analy-
sis. If additional compute is required within this range, exploiting
the compute capacity of SmartNICs to manage workload spikes
instead of servers is a more economical decision. Currently, all that
compute that is available on SmartNICs is primarily used for offload-
ing network functions and services. In most cases, that is a severe
under-utilization of the available compute power on SmartNICs. We
aim to harvest this under-utilized compute and make it available to
the applications.We propose a novel platform to orchestrate general
purpose compute workloads onto deployed SmartNICS.

2.3 Serverless Edge Computing
Serverless computing, or Function as a Service is emerging as a

new and compelling computing paradigm where applications can be
deployed as multiple lightweight tasks in the form of functions on a
shared runtime environment. Serverless has been popularly adopted
by public cloud vendors such as Amazon, Microsoft, and Google
[14, 15]. The flexible low-compute intensive feature makes Server-
less computing very lucrative for edge computing, as application
workloads can be easily balanced between edge and cloud. More-
over, since the serverless workload usually consists of lightweight
functions, it provides an excellent opportunity for SmartNICs to ac-
celerate them. The elasticity feature in serverless computing allows
users to acquire and release resources according to their needs. How-
ever, due to the high cost of context switching, CPU-based serverless
frameworks are not well-suited to run thousands of functions. In this
work, we propose a solution to mitigate this problem by intelligent
offloading of edge computing workloads to the SmartNIC. In particu-
lar, we focus on ML workloads at the edge where transient workload
spikes can result in SLA violations due to a lack of spare compute
resources. There are several challenges and open problems in this
area that have not been addressed before. This paper addresses some
of these challenges using a generic architecture that can help offload
the compute-intensive and network-dependent serverless compute
workloads onto the SmartNICs.

2.4 Workload Spikes
We are further motivated for the need for additional compute

resources as various datasets and literature illustrate that high CPU
utilization lead to over subscription of servers. We also note that high
CPU utilization peaks in large scale data centers lead to over sub-
scription of the servers which incur high capital expense (CAPEX)
and operational cost (OPEX). For example, Microsoft Azure’s dataset
from 2019 which contains information of about 2.6M VMs and 1.9B
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Figure 1: Average and P95 of max CPU utilizations.

utilization data [16] recorded at 5-min time intervals. In Figure 1,
we show the Cumulative Distribution Function (CDF) of the average
CPU utilization of this dataset and the CDF of 95-th-percentile of
maximum CPU utilization (P95 Max). The P95 utilization shows
high utilization for almost 62% of VMs. Similarly, in various edge
computing scenarios such as CDN edge servers [17], video on-
demand [18], enterprise-edge [19], we observe the common trend of
requiring high compute resources at the edge to handle high traffic
workloads.

While the average CPU utilization is low, P95 CPU utilization is
higher than 60% for 62% of the VMs. We note that average utiliza-
tion is not a good indicator of VMs’ compute resource requirements.
In Section 4, we show that when the CPU load is high, the average
response time latencies of serverless workload gets higher and we
see higher SLA violations. To guarantee applications’ SLA, cloud
and edge providers usually oversubscribe resources which leads to
inefficient resource utilization and higher costs. Using SpikeOffload
framework, we leverage the extra compute capacity of SmartNICs
to manage the P95 of high load spikes to reduce the operational and
capital expense costs and reduce SLA violations.

3 SYSTEM OVERVIEW
We begin by providing an overview of SpikeOffload, an intelligent

orchestration framework that can be leveraged for any containerized
application deployment on data center and/or Edge systems. Figure 2
shows the various components of SpikeOffload framework. The
server can host any number of SmartNICs as the number of PCIe
buses available. For our PoC system, we use Kubernetes as the
container orchestration system that runs on the host and SmartNIC
OS. Currently, this specialized architecture works only with SoC-
based SmartNIC architecture [6].

The major components of our solution consist of (i) a workload
manager module that uses the history of the workload in a time
window to predict the workload spikes and distributes the request
traffic based on the service time and CPU load of each server and
SmartNIC, and (ii) the SpikeOffload orchestrator module manages
the workload spikes based on the load on the servers and SmartNICs.
In the following, we describe each module.

3.1 Workload Manager
The current design of Serverless systems and applications is based

on the assumption that all computing resource nodes are homoge-
neous and have the same service time and the same amount of load.
This paper shows that this assumption leads to degraded performance
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Figure 2: System Overview.

Figure 3: Traffic Distributor.

of workloads running on multiple nodes, especially when one of the
compute nodes gets overloaded or takes more time to service the
requests. To illustrate the problem, consider two serverless functions
A and B that take 2/10 seconds to run on the SmartNIC and 1/5
second to run on the host OS, respectively, but when the host gets
overloaded with other workloads, the response times on the host OS
changes to 3/8 for functions A and B respectively 1. In this example,
it is better to run the two functions on the host OS when the host
OS is not overloaded, and when it gets overloaded, function A can
be offloaded to the SmartNIC. This is particularly important in the
cases where the workload has data dependency such as with ML
workloads and running the workload on an additional server incurs
a high cost due to data movement and high latency. To provision
for the workload spikes proactively to meet the required Service
Level Agreement (SLAs), we predict the future workload demands
ahead of time. We propose a support vector regression (SVR) pre-
diction model that predicts the workload bursts to trigger the traffic
distribution module and also mitigate the impact of containers’ cold
start latency [20–23] that can generally lead to a longer response
time to application queries otherwise. Our prediction model is based
on the past observations of the workload over a window size of𝑊
time units. We change the window size dynamically based on the
workload variations over time. We increase the training window size
if the workload variation over the current window is less than 10%
and decreases once the workload variation is more than 20%.

3.2 Traffic Distributor
In our design, the queries first arrive at the API gateway of the

scheduler within the SmartNIC OS, further highlighted in Figure 3,
where our traffic distributor is located and distributes the traffic

1We note that these numbers are subject to change depending on the workload burst and
resource congestion on the SmartNICs and host OS servers
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according to the service time of each SmartNICs’ ARM core or host
OS’s core within a server. We note that the service time of each
function is subject to change depending on the workload spikes.
Assuming the requests arrive with the arrival rate of 𝜆 and assuming
each host OS and SmartNIC have a service rate of 𝜇𝑖 and having
an 𝑀/𝑀/1 queue at each server, the optimal traffic distributor that
makes the sojourn time equal for each queue is as follows:

𝜆1 − 𝜇1 = 𝜆2 − 𝜇2 = ... = 𝜆𝑁 − 𝜇𝑁 (1)

In other words, by solving the linear system of equations, the optimal
traffic distribution on 𝑁 servers is as follows:

𝜆𝑖 = 𝜇𝑖 +
𝜆 −∑𝑁

𝑗=1 𝜇 𝑗

𝑁
𝑖 = 1, ..., 𝑁 (2)

where 𝜆 = 𝜆1 + ... + 𝜆𝑁 We continuously monitor the service rates of
each node on the cluster and try to avoid running the workload on a
cluster node that has very high service time due to workload spikes.
The queries are then redirected to the appropriate containerized
application pods running either on the Host or SmartNIC OS.

3.3 SpikeOffloadOrchestrator
SpikeOffload consists of a resource monitoring module that ex-

ploits the output of the workload manager module. The resource
monitoring module periodically monitors each node’s CPU and mem-
ory utilization and service rates. If the CPU utilization gets higher
than a specified threshold Δ, or if the service rate of application
𝑋 on one of the nodes in the cluster gets higher than the specified
SLA, the orchestrator sends feedback to the workload manager to
redistribute the workload to dampen the spikes. We use the output
of the workload prediction module to predict future spikes ahead
of time and perform pro-active spike management. Pro-active spike
management has two benefits: (i) first, we can redistribute the traffic
based on the predicted future workload, which avoids specific server
nodes to get congested, and (ii) second, it mitigates the containers’
cold start latency by starting new containers before the actual load
arrives. The spike management module updates the service rate, 𝜇𝑖
of each node in the cluster and requests arrival rates in the traffic
distributor module, and triggers a new traffic distribution command
if the spikes are higher than a specified threshold or the mean service
rate of a node in the cluster increases and violate the specified SLA
metric.

4 DISCUSSION
In this section, we discuss the benefits and limitations of Spike-

Offload based on a quantitative analysis. Avoiding application SLA
violation is one of the primary concerns at the edge. We describe how
SpikeOffload mitigates SLA violations; we also discuss our testbed

setup and performance benefits of SpikeOffload architecture. Then
we briefly discuss broader implications and show the challenges we
faced to achieve micro-service application offload.

4.1 Edge Computing SLAs
Service Level Agreements are critical when applications are de-

ployed in a Service Oriented Architecture (SOA). SLAs are com-
monly adopted in cloud computing and, more recently, at the Edge.
SLA defines the level of service expected by the consumer based
on metrics that the application provider lays out. SLA comprises of
the metrics by which the service is measured, such as monitoring
the QoS (Quality of Service) metrics [24, 25]. Some of the most
common QoS metrics that are part of SLA are response time and
throughput. For instance, with ML image classification workload,
time taken to classify one image, and the number of images classi-
fied per unit of time. In Edge Computing, where there are limited
resources when the application receives a burst of queries at an in-
stance, the response time suffers high tail latency. This problem is
further strained when the host has additional background workload
for other applications or needs part of the edge infrastructure for its
Network and Storage needs. This leads to SLA violations and the
consumer’s poor application Quality of Experience (QoE). In our
evaluation, we use the response time metric, to evaluate the penalty
with and without additional compute resources such as SmartNICs.

4.2 Performance Benefits
We set up the testbed of SpikeOffload using enterprise-grade

high-performance HPE DL380 Gen9 Servers with PCIe 3.0 slots to
support two Mellanox Bluefield [26] SmartNICs per server as shown
in Figure 4. We deployed a Kubernetes cluster over both server and
SmartNIC OS to create a heterogeneous multi-core cluster nodes.
To best of our knowledge, this is one of the first efforts to offload a
full containerized application onto SmartNICs.

We implemented a prototype the OpenFaaS serverless plaftorm.
We evaluated it on three popular serverless workloads, (i) CPU-
intensive Fibonacci function, (ii) latency-sensitive key-value store,
and (iii) a sentiment analysis function that uses machine learning
to perform natural language processing. Since Host and SmartNIC
are different compute architectures, We generate multi-architecture
images (x86 or ARM-based) for these functions.

Our experiments involve testing the three serverless applications’
performance in an environment with transient spikes and heavy back-
ground workload with and without offload. We use “hey” HTTP(S)
load generator [27] to generate incoming queries at scale to the
platform and emulate transient spikes using a stress tool [28]. Fig 5.
shows the response time distribution for different functions. The
SLA threshold is specified by the application user and exposed to the
scheduler. We first run the default OpenFaas scheduler on one server,
we introduce stress on the host server and increase the average CPU
utilization to 80% by running background serverless workload with
200 average queries per second (Case 1: 1 server with background
workload). The tail latency increases when the host OS has a high
load, leading to SLA violations. Adding another server with uni-
form workload distribution (default Kubernetes scheduler) in the
baseline (2 servers, one with background workload and one without
background workload) does not solve the problem since half of the
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Cluster type Cost ($)
1 server (case 1) 7000
2 servers (case 2) 14000

1 server and a SmartNIC 8000
1 server and 2 SmartNICs 9000

Table 1: Capital expense costs.

queries are routed to the overloaded host. Next, we run the workload
on two servers with proportional workload distribution that is load-
aware (Case 2: two servers with proportional workload distribution
similar to SpikeOffload’s workload distributor). In SpikeOffload,
we detect the overloaded node in the cluster and avoid routing the
workload requests to that node. We run SpikeOffload in two cases,
when having one SmartNIC and when we have two SmarttNICs on
the same server. Although the SmartNICs have lower computational
power than the host OS, when there is a transient spike that overloads
the CPU, SpikeOffload leverages SmartNIC’s compute capacity to
reduce SLA violations.

Figure 6 shows the performance/energy consumption for this sce-
nario. Where we use 1/response time as the performance metric. As
shown, running the serverless workload on the SmartNICs provides
better performance/energy consumption. The SmartNICs used in
our testbed are 3.5x more energy efficient than the host server. As
shown, our framework provides more than 2x performance/energy
saving. We also note that there is obvious cost efficiency when using
SmartNICs given its lower cost as compared to servers as shown in
Table 1.

4.3 Broader Implications
There has been a tremendous rise in the adoption of Function-as-

as-Service (FaaS) or Serverless, potentially due to their economi-
cally attractive services with reduced operational costs compared
to Infrastructure-as-a-Service (IaaS). Enterprises like ClearBlade,
EdgeConneX, and Edge Intelligence focus on running FaaS work-
loads at the edge instead of processing data at a data warehouse.
We believe a platform like SpikeOffload that leverages DPUs (e.g.
SmartNICs) for offloading transient spikes and smaller workloads
could significantly improve the scalability and efficiency of edge
computing resources at a fraction of the cost of adding bare-metal
servers, as is traditionally done.

Challenges in DPU Offload
In this section, we enumerate some of the challenges we faced

and lessons learned while developing SpikeOffload.
Hardware-based: Manufacturers have yet to make SmartNICs

universally compatible with all available bare-metal options. Addi-
tionally, to scale a platform like SpikeOffload, it is imperative to
have a vendor-agnostic solution. For instance, SoC-based SmartNICs
could offer a universal protocol to set up Linux environments effort-
lessly; they are currently tightly coupled into their vendor-designed
architectures, which involves procedural effort for initial setup. How-
ever, we note that this is relatively easier to achieve than setting up
bare-metal servers that require infrastructure-based protocols such
as iLo[29] for automated setup.

SoC-based SmartNICs, which are generally "off-path" in architec-
ture design, contain a "nic-switch" [9] that determines the packet’s
path once it enters the physical interface. This "nic-switch" has a

rigid design based on the vendor’s architecture, and therefore, la-
tency performance is skewed for embedded or separated modes.
Moreover, most SmartNIC vendors only enable embedded mode,
which further challenges the deployment of SpikeOffload framework.
Enabling flexibility of the "nic-switch" can potentially lower latency
and improve the performance of SpikeOffload.

Software-based: SoC-based SmartNICs typically embed an ARM64
architecture, while bare-metal solutions usually are built on an x86
architecture. This heterogeneity in system architecture requires us
to develop and make available serverless applications (container
images) for each system type (ARM65 and x86) – leading to higher
temporal overheads. Furthermore, SpikeOffload framework is de-
veloped for SoC-based SmartNICs [9, 11], given the need for a
Linux-based operating system to run container orchestration (that
executes the workloads). Further research is required to develop
SpikeOffload-like solutions for ASIC- and FPGA-based SmartNICs.
SoC-based SmartNICs (e.g., Mellanox) have two modes of opera-
tion: Embedded, and Separated modes. The interfaces are mapped to
the host OS network stack in embedded mode and the kernel routes
packets from the host. The host OS and the SmartNIC have sepa-
rate, independent network stacks to process packets in the separated
mode. While we observe slightly better tail-latencies from packet
processing in embedded mode, the offset from separate mode is
negligible. For SpikeOffload, we adopt the separated mode due to its
programmable flexibility and the ability to run containers directly on
the SmartNIC’s ARM64 OS. We observe that the recent versions of
SmartNICs can support containers with many network restrictions.
We hope that SpikeOffload can work with both modes with more
improvements from the vendor in the underlying hardware or by
providing the compatible container network interface (CNI). Pre-
vious work [9] has demonstrated the efficiency gain in offloading
networking functions onto the SmartNICs. However, SmartNICs
have limited computation capacity when compared to server OS.
For example, SmartNIC in our testbed has 16 processing threads
with 312.50 flops, and the host server has 40 processing threads with
4604.74 available flops. So, modules (in kernel space) that prioritize
networking functions over application workloads are necessary to
ensure proper functionalities of network processes. Moreover, care-
ful monitoring is needed to ensure the area under the curve (AUC)
for workload spikes does not exceed the compute capacity of Smart-
NICs (serverless functions typically have smaller footprints). Lastly,
to minimize cold-start latency of the initial offload (potentially have
higher tail-latencies), seed pods need to be warmed up on the offload
devices at all times. This approach can incur a small computation
overhead.

5 RELATED WORK
Recent research on SmartNICs focuses on leveraging the compute

power to offload various application workloads [8–10, 30]. Most of
these approaches focus on moving small functions onto the Smart-
NIC OS. At the same time, SpikeOffload is a framework that can
offload complete workload containers onto the SmartNIC OS, lever-
aging the separated-host mode (Sec 2.1) of SoC-based SmartNICs.
Most other research on SmartNIC hardware offloading is limited
to network functions such as load-balancing, firewall, etc. [31]. In
SpikeOffload, we differentiate by offloading application workloads
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(b) Key-value store.
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Figure 5: Response time distribution of different functions.
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(a) Fibonacci.
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(b) Key-value store.
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(c) Sentiment analysis.

Figure 6: Performance/Energy consumption distribution of different functions.

as containers, not just functions. We showcase the benefit and also
explore the challenges.

Workload spike management is a well-explored problem space in
the cloud and networks [2, 32] , where user query surge can lead to
downtime and poor QoE. At the edge, it can be pretty challenging to
deal with traffic spikes, and the most common business solution is
over-provisioning computing resources [33, 34]. We differentiate by
utilizing SmartNICs to address transient spikes at the edge, thereby
enabling transient elasticity of resources. SmartNICs are limited in
computing capacity, so it is critical to offload essential workloads.
Therefore, SpikeOffload’s approach to offload only during traffic
spikes validates the strategy given the CAPEX and OPEX savings
without much application performance degradation. In that aspect,
Serverless applications are gaining popularity to be deployed at the
edge for AI, security, and storage workloads [35, 36].

Certain body of research have explored offloading functions of
applications onto SmartNICs processing units[8–10]. For instance,
Lambda-NIC [8] demonstrates offloading data plane programming
functionality of serverless applications to ASIC SmartNICs. While
iPipe [9] offloads applications designed in actor-programming model.

In SpikeOffload, we adopt a novel approach of offloading the en-
tire containerized serverless application (small function containers)
onto the SoC-based SmartNIC OS by establishing SmartNIC OS as
nodes in the cluster network. While we move the whole container to
the Smartnic, [8] rely on P4 programmability to offload a small part
of applications to the SmartNic. In [8] the host and the Smartnic are
one single node in the Kubernetes cluster, and changing the applica-
tion requires code modification to offload to the SmartNic, while in

our framework, the SmartNic is one of the nodes in the cluster and
can leverage the Kubernetes orchestration system for scheduling,
auto-scaling, etc.

6 CONCLUSION
This paper proposes a new platform that leverages the DPUs’ and

SmartNICs’ computational capacity to offload and accelerate server-
less workload in the presence of transient traffic spikes at a lower
cost. Our solution is three-fold. First, we propose a novel system
architecture leveraging container orchestration systems to distribute
the workloads between Hosts and SmartNICs based on the demand
for transient elasticity of resources. The next challenge we solve is
to manage the workload spikes by exploiting the unused computa-
tional capacity of the SmartNICs to avoid SLA violations. Finally,
we propose a novel workload prediction approach that predicts the
transient spikes and starts the containers before the actual load ar-
rives in the system to mitigate the containers’ cold start latency.
Accounting for transient elasticity using SmartNICs has the added
benefit of provisioning a hybrid cloud and edge deployment, with
the flexibility to scale edge deployments when required. This could
lead to faster turnaround times for system administrators executing
decisions to allocate compute cycles. While this paper focuses on
transient elasticity for workload spikes, SpikeOffload architecture
can be leveraged for building a generalized system for federated edge
infrastructure with heterogeneous DPUs like GPU and SmartNICs,
etc.
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