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Background and Motivation
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Machine learning is prevalent
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Current practice of ML training/inference is

● Distributed

● Relying on accelerators
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The control plane is still on CPU

● CPU needs to handle many jobs
○ Data pre-processing

○ Network stack

○ Aided computation for ML

○ Background CPU activities

○ …
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The control plane is still on CPU

● High CPU utilization rate 

negatively impacts the ML 

performance[1]

● Inefficiency: bottleneck on CPUs

7[1] Weng et al., “MLaaS in the wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters”, NSDI’22. 



Solution: minimize the CPU involvements

● We should remove any barrier
○ Kernel – DPDK

○ Host CPU – RDMA/GPUDirect
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But RDMA is incompatible with accelerator scheduling

● Consider multi-tenant or public-

facing environment

● With GPUDirect RDMA, the 

client needs to determine 

where to put the data

● But it cannot properly do so
○ Network latency

○ Security and privacy
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Why accelerator scheduling is critical

● Heterogeneity of accelerators

10[2] https://www.gpu-mart.com/blog/best-gpus-for-ai-and-deep-learning-2024



Why accelerator scheduling is critical

● Heterogeneity of accelerators

● GPU virtualization and sharing
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Why accelerator scheduling is critical

● Heterogeneity of accelerators

● GPU virtualization and sharing

12[3] Cho et al., “SLA-driven ML inference framework for clouds with heterogeneous accelerators”, MLSys’22. 



Can we resolve both inefficiencies at the same time?

● SmartNIC comes into help
○ Off-path* SmartNIC is equipped with a general purpose SoC

○ This helps to effectively bypass host CPU while enabling accelerator scheduling
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System Design
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Conspirator, A SmartNIC-Aided Control Plane

● The SmartNIC SoC provisions a local buffer for incoming requests

● Scheduling decision is made at the SmartNIC SoC

● Host CPU is not involved for data transfer
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Procedure of Conspirator

● The host CPU allocates GPU 

memory and sends the pointers to 

the SmartNIC

● The client sends data to the 

SmartNIC, which then forwards it 

directly to the GPU

● During execution, the host CPU is 

only involved in triggering the ML 

execution at GPU
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Procedure of Conspirator

● Result is returned through host 

CPU for minimizing changes on 

existing ML code

● This procedure is per client. In 

practice, SmartNIC handles 

concurrent requests from multiple 

clients
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ML Scheduling on Accelerators

● Scheduling is a mixed integer linear 

programming problem

● We have proved that is it NP-Hard

● We propose a heuristic to 

approximate the optimal solution

18



High-Level Ideas in Scheduling

● GPU is split into fractions using MIG

● Flexible GPU fraction allocation

● Data privacy is guaranteed (following real-world demands)

● Potential migration of ongoing jobs
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Conspirator Implementation

● Communication is realized using NVIDIA DOCA library and custom CUDA 

extension

● Allows reusing any existing ML code in Python with one line of modification: 

the creation of the input tensor

● Our heuristic is used for making GPU scheduling decisions
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Evaluation
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Evaluation Setup
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● Testbed: Bluefield 3 SmartNIC + A100 GPU

● We compare against different architecture mentioned earlier
① TCP server with host CPU handling
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Evaluation Setup
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● Testbed: Bluefield 3 SmartNIC + A100 GPU

● We compare against different architecture mentioned earlier
① TCP server with host CPU handling

② GPUDirect

③ Conspirator w/o SmartNIC

④ Conspirator



End-to-End Duration
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● Results fit intuition: ① is worst, ② is best

● But ② does not allow accelerator scheduling

● Conspirator (④) outperforms similar setting (③) without SmartNIC

① TCP server with host CPU handling

② GPUDirect

③ Conspirator w/o SmartNIC

④ Conspirator



End-to-End Duration
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● Performance gap between ③ and ④ grows when CPU is more intense

● Benefit is realized through (check out our paper!)
○ Less CPU involvement 

○ Faster local data copy

① TCP server with host CPU handling

② RDMA data to GPU memory

③ RDMA data to host memory

④ Conspirator



Cost Efficiency
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● Conspirator promotes a more cost-effective and power-efficient system 

configuration



Scheduling Benefits
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● Proper GPU sharing saves 33% on total consumed GPU hours

● Our heuristics achieves the same performance as optimal scheduling 

(Alibaba dataset) 

Naïve Scheduling

Our Heuristic

Optimal



Conclusion
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● We propose Conspirator, a SmartNIC-aided control plane for optimizing 

distributed ML workloads

● Conspirator addresses two critical inefficiencies at the same time
○ Bottleneck on CPUs

○ Sub-optimal accelerator scheduling

● Conspirator leverages SmartNIC and is thus more cost-effective (17%) and 

power-efficient (44%) 

● Conspirator leverages proper GPU scheduling to reduce 33% total consumed 

GPU hours compared to naïve scheduling
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