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Background and Motivation



Machine learning is prevalent




Current practice of ML training/inference is

e Distributed
e Relying on accelerators
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The control plane is still on CPU

e CPU needs to handle many jobs
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The control plane is still on

e High CPU utilization rate
negatively impacts the ML
performancell]

e |nefficiency: bottleneck on CPUs
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[1] Weng et al., “MLaaS in the wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters”, NSDI'22.




Solution: minimize the CPU involvements

e We should remove any barrier
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But RDMA is incompatible with accelerator scheduling

e Consider multi-tenant or public-
facing environment

e With GPUDirect RDMA, the
client needs to determine
where to put the data

e But it cannot properly do so
o Network latency
o Security and privacy
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Why accelerator scheduling is critical

e Heterogeneity of accelerators
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Why accelerator scheduling is critical

e GPU virtualization and sharing

Average training speed (ms/step)
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Why accelerator scheduling is critical

GPU

e GPU virtualization and sharing
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(c) SMIF.

[3] Cho et al., “SLA-driven ML inference framework for clouds with heterogeneous accelerators”, MLSys’22.
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Can we resolve both inefficiencies at the same time?

e SmartNIC comes into help
o Off-path* SmartNIC is equipped with a general purpose SoC
o This helps to effectively bypass host CPU while enabling accelerator scheduling
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System Design



Conspirator, A SmartNIC-Aided Control Plane

e The SmartNIC SoC provisions a local buffer for incoming requests
e Scheduling decision is made at the SmartNIC SoC
e Host CPU is not involved for data transfer
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Procedure of Conspirator

e The host CPU allocates GPU
memory and sends the pointers to
the SmartNIC

e The client sends data to the
SmartNIC, which then forwards it
directly to the GPU

e During execution, the host CPU is
only involved in triggering the ML
execution at GPU
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Procedure of Conspirator

Result is returned through host
CPU for minimizing changes on
existing ML code

This procedure is per client. In
practice, SmartNIC handles
concurrent requests from multiple
clients
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ML Scheduling on Accelerators

e Scheduling is a mixed integer linear
programming problem

e \We have proved that is it NP-Hard

e \We propose a heuristic to
approximate the optimal solution
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High-Level Ideas in Scheduling

GPU is split into fractions using MIG

Flexible GPU fraction allocation

Data privacy is guaranteed (following real-world demands)
Potential migration of ongoing jobs
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Conspirator Implementation

e Communication is realized using NVIDIA DOCA library and custom CUDA

extension
e Allows reusing any existing ML code in Python with one line of modification:

the creation of the input tensor

e Our heuristic is used for making GPU scheduling decisions
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Evaluation



Evaluation Setup

e Testbed: Bluefield 3 SmartNIC + A100 GPU

e We compare against different architecture mentioned earlier

(1) TCP server with host CPU handling
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Evaluation Setup

e Testbed: Bluefield 3 SmartNIC + A100 GPU
e We compare against different architecture mentioned earlier

(2) RDMA data to GPU memory (GPUDirect)
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Evaluation Setup

e Testbed: Bluefield 3 SmartNIC + A100 GPU
e We compare against different architecture mentioned earlier

(3) RDMA data to host memory (Conspirator w/o SmartNIC)
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Evaluation Setup

e Testbed: Bluefield 3 SmartNIC + A100 GPU
e We compare against different architecture mentioned earlier

(4) Conspirator GPU
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(1) TCP server with host CPU handling
(2) GPUDirect

End-to-End Duration (3) Conspirator w/o SmartNIC
(4) Conspirator
e Results fit intuition: (1) is worst, (2) is best
e But (2) does not allow accelerator scheduling
e Conspirator ((4)) outperforms similar setting ((3)) without SmartNIC
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End-to-End Duration

(1) TCP server with host CPU handling
(2) RDMA data to GPU memory

(3) RDMA data to host memory

(4) Conspirator

e Performance gap between (3) and (4) grows when CPU is more intense
e Benefit is realized through (check out our paper!)

o Less CPU involvement
o Faster local data copy
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Cost Efficiency

e Conspirator promotes a more cost-effective and power-efficient system

configuration

- )
Hardware | Price (Normalized) Power Consumption Throughput (Normalized) | Cost-Effectiveness Power Efficiency
Host CPU | $1,000 800W 1,000 | 1.0 1.25
SmartNIC | $231 150W 270 | 1.17 (+17%) 1.8 (+44 %)
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Scheduling Benefits

e Proper GPU sharing saves 33% on total consumed GPU hours
e Our heuristics achieves the same performance as optimal scheduling

(Alibaba dataset)
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Conclusion

e \We propose Conspirator, a SmartNIC-aided control plane for optimizing
distributed ML workloads

e Conspirator addresses two critical inefficiencies at the same time
o Bottleneck on CPUs
o Sub-optimal accelerator scheduling

e Conspirator leverages SmartNIC and is thus more cost-effective (17%) and
power-efficient (44%)

e Conspirator leverages proper GPU scheduling to reduce 33% total consumed
GPU hours compared to naive scheduling
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If you are interested in Hewlett Packard Labs, Talk to us!

Diman Zad Tootaghaj, email: diman.zad-tootaghaj@hpe.com
Lianjie Cao, email: lianjie.cao@hpe.com
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