Conspirator: SmartNIC-Aided Control Plane for Distributed ML Workloads

Yunming Xiao¹, Diman Zad Tootaghaj², Aditya Dhakal², Lianjie Cao², Puneet Sharma², Aleksandar Kuzmanovic¹

¹ Northwestern University, ² Hewlett Packard Labs

Table of Contents

- Background and Motivation
- System Design
- Evaluation
- Conclusion

Background and Motivation

Machine learning is prevalent

Current practice of ML training/inference is

- Distributed
- Relying on accelerators

The control plane is still on CPU

- CPU needs to handle many jobs
 - Data pre-processing
 - Network stack
 - Aided computation for ML
 - Background CPU activities
 - 0 ...

(a) Traditional.

The control plane is still on CPU

 High CPU utilization rate negatively impacts the ML performance^[1]

Inefficiency: bottleneck on CPUs

(a) Traditional.

Solution: minimize the CPU involvements

- We should remove any barrier
 - Kernel DPDK
 - Host CPU RDMA/GPUDirect

(b) CPU-bypass Design.

But RDMA is incompatible with accelerator scheduling

- Consider multi-tenant or publicfacing environment
- With GPUDirect RDMA, the client needs to determine where to put the data
- But it cannot properly do so
 - Network latency
 - Security and privacy

(b) CPU-bypass Design.

Why accelerator scheduling is critical

Heterogeneity of accelerators

Resnet50 (FP16)

Why accelerator scheduling is critical

- Heterogeneity of accelerators
- GPU virtualization and sharing

Why accelerator scheduling is critical

- Heterogeneity of accelerators
- GPU virtualization and sharing

Can we resolve both inefficiencies at the same time?

- SmartNIC comes into help
 - Off-path* SmartNIC is equipped with a general purpose SoC
 - This helps to effectively bypass host CPU while enabling accelerator scheduling

Design Option	Efficient CPU Cycle Usage	
$Client \xleftarrow{GPUDirect} GPU$	✓	×
$Client \stackrel{RDMA}{\longleftrightarrow} CPU \stackrel{PCIe}{\longleftrightarrow} GPU$	×	√
$\mathbf{Client} \overset{\mathbf{RDMA}}{\longleftrightarrow} \mathbf{SNIC} \overset{\mathbf{DMA}}{\longleftrightarrow} \mathbf{GPU}$	✓	√

System Design

Conspirator, A SmartNIC-Aided Control Plane

- The SmartNIC SoC provisions a local buffer for incoming requests
- Scheduling decision is made at the SmartNIC SoC
- Host CPU is not involved for data transfer.

Procedure of Conspirator

- The host CPU allocates GPU memory and sends the pointers to the SmartNIC
- The client sends data to the SmartNIC, which then forwards it directly to the GPU
- During execution, the host CPU is only involved in triggering the ML execution at GPU

Procedure of Conspirator

- Result is returned through host CPU for minimizing changes on existing ML code
- This procedure is per client. In practice, SmartNIC handles concurrent requests from multiple clients

ML Scheduling on Accelerators

- Scheduling is a mixed integer linear programming problem
- We have proved that is it NP-Hard
- We propose a heuristic to approximate the optimal solution

$$\min_{x_{ijwt}} \ \varepsilon_1 \sum_j Y_j + \varepsilon_2 \sum_i m_i \delta_i \tag{1}$$

$$s.t. \sum_{t} \sum_{i} \sum_{w} x_{ijwt} = 1, \forall i \in [1, N]$$

$$\tag{1a}$$

$$\sum_{j} \sum_{w} x_{ijwt} \le R_{it}, \forall i \in [1, N], \forall t \in [1, T]$$
(1b)

$$\sum_{t} \sum_{i} R_{it} \cdot x_{ijwt} \leq \alpha_{jw} \cdot y_{jw}, \forall j \in [1, J], \forall w \in [1, W_j]$$

(1c)

$$\sum_{w} \alpha_{jw} \cdot y_{jw} \le C_j, \forall j \in [1, J]$$
 (1d)

$$Y_j \ge \frac{\sum_w y_{jw}}{N}, \forall j \in [1, J]$$
 (1e)

$$\delta_i = 1 - \sum_t \sum_j \sum_w x_{ijwt} \cdot k_{ijwt}, \forall i \in [1, N]$$
 (1f)

$$A_{jt} \ge \frac{\sum_{t} \sum_{w} x_{ijwt}}{N}, \forall j \in [1, J], \forall t \in [1, T]$$
 (1g)

$$\sum_{t} A_{jt} \le 1, \forall j \in [1, J] \tag{1h}$$

$$\delta_{i}, x_{ijwt}, k_{ijwt}, A_{jt}, y_{jw}, Y_{j} \in \{0, 1\}$$
 (1i)

High-Level Ideas in Scheduling

- GPU is split into fractions using MIG
- Flexible GPU fraction allocation
- Data privacy is guaranteed (following real-world demands)
- Potential migration of ongoing jobs

Conspirator Implementation

- Communication is realized using NVIDIA DOCA library and custom CUDA extension
- Allows reusing any existing ML code in Python with one line of modification: the creation of the input tensor
- Our heuristic is used for making GPU scheduling decisions

Evaluation

- Testbed: Bluefield 3 SmartNIC + A100 GPU
- We compare against different architecture mentioned earlier
 - (1) TCP server with host CPU handling

- Testbed: Bluefield 3 SmartNIC + A100 GPU
- We compare against different architecture mentioned earlier
 - 1 TCP server with host CPU handling
 - (2) RDMA data to GPU memory (GPUDirect)

- Testbed: Bluefield 3 SmartNIC + A100 GPU
- We compare against different architecture mentioned earlier
 - 1) TCP server with host CPU handling
 - (2) GPUDirect
 - 3 RDMA data to host memory (Conspirator w/o SmartNIC) GPU

- Testbed: Bluefield 3 SmartNIC + A100 GPU
- We compare against different architecture mentioned earlier
 - 1) TCP server with host CPU handling
 - (2) GPUDirect
 - (3) Conspirator w/o SmartNIC

End-to-End Duration

- 1 TCP server with host CPU handling
- (2) GPUDirect
- 3 Conspirator w/o SmartNIC
- 4 Conspirator

- Results fit intuition: (1) is worst, (2) is best
- But (2) does not allow accelerator scheduling
- Conspirator (4) outperforms similar setting (3) without SmartNIC

(a) 0% background CPU load.

End-to-End Duration

- 1 TCP server with host CPU handling
- 2 RDMA data to GPU memory
- (3) RDMA data to host memory
- 4 Conspirator
- Performance gap between (3) and (4) grows when CPU is more intense
- Benefit is realized through (check out our paper!)
 - Less CPU involvement

Faster local data copy

Cost Efficiency

Conspirator promotes a more cost-effective and power-efficient system configuration

Hardware	Price (Normalized)	Power Consumption	Throughput (Normalized)	Cost-Effectiveness	Power Efficiency
Host CPU	\$1,000	800W	1,000	1.0	1.25
SmartNIC	\$231	150W	270	1.17 (+17%)	1.8 (+44%)
				1	

Scheduling Benefits

- Proper GPU sharing saves 33% on total consumed GPU hours
- Our heuristics achieves the same performance as optimal scheduling (Alibaba dataset)

Conclusion

- We propose Conspirator, a SmartNIC-aided control plane for optimizing distributed ML workloads
- Conspirator addresses two critical inefficiencies at the same time
 - Bottleneck on CPUs
 - Sub-optimal accelerator scheduling
- Conspirator leverages SmartNIC and is thus more cost-effective (17%) and power-efficient (44%)
- Conspirator leverages proper GPU scheduling to reduce 33% total consumed GPU hours compared to naïve scheduling

If you are interested in Hewlett Packard Labs, Talk to us!

Diman Zad Tootaghaj, email: diman.zad-tootaghaj@hpe.com Lianjie Cao, email: lianjie.cao@hpe.com