
Conspirator: SmartNIC-Aided Control Plane for

Distributed ML Workloads

1

Yunming Xiao1, Diman Zad Tootaghaj2, Aditya Dhakal2, Lianjie Cao2,
Puneet Sharma2, Aleksandar Kuzmanovic1

1 Northwestern University, 2 Hewlett Packard Labs

Table of Contents

● Background and Motivation

● System Design

● Evaluation

● Conclusion

2

Background and Motivation

3

Machine learning is prevalent

4

Current practice of ML training/inference is

● Distributed

● Relying on accelerators

5

The control plane is still on CPU

● CPU needs to handle many jobs
○ Data pre-processing

○ Network stack

○ Aided computation for ML

○ Background CPU activities

○ …

6

The control plane is still on CPU

● High CPU utilization rate

negatively impacts the ML

performance[1]

● Inefficiency: bottleneck on CPUs

7[1] Weng et al., “MLaaS in the wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters”, NSDI’22.

Solution: minimize the CPU involvements

● We should remove any barrier
○ Kernel – DPDK

○ Host CPU – RDMA/GPUDirect

8

But RDMA is incompatible with accelerator scheduling

● Consider multi-tenant or public-

facing environment

● With GPUDirect RDMA, the

client needs to determine

where to put the data

● But it cannot properly do so
○ Network latency

○ Security and privacy

9

Why accelerator scheduling is critical

● Heterogeneity of accelerators

10[2] https://www.gpu-mart.com/blog/best-gpus-for-ai-and-deep-learning-2024

Why accelerator scheduling is critical

● Heterogeneity of accelerators

● GPU virtualization and sharing

11

Why accelerator scheduling is critical

● Heterogeneity of accelerators

● GPU virtualization and sharing

12[3] Cho et al., “SLA-driven ML inference framework for clouds with heterogeneous accelerators”, MLSys’22.

Can we resolve both inefficiencies at the same time?

● SmartNIC comes into help
○ Off-path* SmartNIC is equipped with a general purpose SoC

○ This helps to effectively bypass host CPU while enabling accelerator scheduling

13

System Design

14

Conspirator, A SmartNIC-Aided Control Plane

● The SmartNIC SoC provisions a local buffer for incoming requests

● Scheduling decision is made at the SmartNIC SoC

● Host CPU is not involved for data transfer

15

Procedure of Conspirator

● The host CPU allocates GPU

memory and sends the pointers to

the SmartNIC

● The client sends data to the

SmartNIC, which then forwards it

directly to the GPU

● During execution, the host CPU is

only involved in triggering the ML

execution at GPU

16

Procedure of Conspirator

● Result is returned through host

CPU for minimizing changes on

existing ML code

● This procedure is per client. In

practice, SmartNIC handles

concurrent requests from multiple

clients

17

ML Scheduling on Accelerators

● Scheduling is a mixed integer linear

programming problem

● We have proved that is it NP-Hard

● We propose a heuristic to

approximate the optimal solution

18

High-Level Ideas in Scheduling

● GPU is split into fractions using MIG

● Flexible GPU fraction allocation

● Data privacy is guaranteed (following real-world demands)

● Potential migration of ongoing jobs

19

Conspirator Implementation

● Communication is realized using NVIDIA DOCA library and custom CUDA

extension

● Allows reusing any existing ML code in Python with one line of modification:

the creation of the input tensor

● Our heuristic is used for making GPU scheduling decisions

20

Evaluation

21

Evaluation Setup

22

● Testbed: Bluefield 3 SmartNIC + A100 GPU

● We compare against different architecture mentioned earlier
① TCP server with host CPU handling

Evaluation Setup

23

● Testbed: Bluefield 3 SmartNIC + A100 GPU

● We compare against different architecture mentioned earlier
① TCP server with host CPU handling

② RDMA data to GPU memory (GPUDirect)

Evaluation Setup

24

● Testbed: Bluefield 3 SmartNIC + A100 GPU

● We compare against different architecture mentioned earlier
① TCP server with host CPU handling

② GPUDirect

③ RDMA data to host memory (Conspirator w/o SmartNIC)

Evaluation Setup

25

● Testbed: Bluefield 3 SmartNIC + A100 GPU

● We compare against different architecture mentioned earlier
① TCP server with host CPU handling

② GPUDirect

③ Conspirator w/o SmartNIC

④ Conspirator

End-to-End Duration

26

● Results fit intuition: ① is worst, ② is best

● But ② does not allow accelerator scheduling

● Conspirator (④) outperforms similar setting (③) without SmartNIC

① TCP server with host CPU handling

② GPUDirect

③ Conspirator w/o SmartNIC

④ Conspirator

End-to-End Duration

27

● Performance gap between ③ and ④ grows when CPU is more intense

● Benefit is realized through (check out our paper!)
○ Less CPU involvement

○ Faster local data copy

① TCP server with host CPU handling

② RDMA data to GPU memory

③ RDMA data to host memory

④ Conspirator

Cost Efficiency

28

● Conspirator promotes a more cost-effective and power-efficient system

configuration

Scheduling Benefits

29

● Proper GPU sharing saves 33% on total consumed GPU hours

● Our heuristics achieves the same performance as optimal scheduling

(Alibaba dataset)

Naïve Scheduling

Our Heuristic

Optimal

Conclusion

30

● We propose Conspirator, a SmartNIC-aided control plane for optimizing

distributed ML workloads

● Conspirator addresses two critical inefficiencies at the same time
○ Bottleneck on CPUs

○ Sub-optimal accelerator scheduling

● Conspirator leverages SmartNIC and is thus more cost-effective (17%) and

power-efficient (44%)

● Conspirator leverages proper GPU scheduling to reduce 33% total consumed

GPU hours compared to naïve scheduling

If you are interested in Hewlett Packard Labs, Talk to us!

Diman Zad Tootaghaj, email: diman.zad-tootaghaj@hpe.com
Lianjie Cao, email: lianjie.cao@hpe.com

31

	Slide 1: Conspirator: SmartNIC-Aided Control Plane for Distributed ML Workloads
	Slide 2: Table of Contents
	Slide 3: Background and Motivation
	Slide 4: Machine learning is prevalent
	Slide 5: Current practice of ML training/inference is
	Slide 6: The control plane is still on CPU
	Slide 7: The control plane is still on CPU
	Slide 8: Solution: minimize the CPU involvements
	Slide 9: But RDMA is incompatible with accelerator scheduling
	Slide 10: Why accelerator scheduling is critical
	Slide 11: Why accelerator scheduling is critical
	Slide 12: Why accelerator scheduling is critical
	Slide 13: Can we resolve both inefficiencies at the same time?
	Slide 14: System Design
	Slide 15: Conspirator, A SmartNIC-Aided Control Plane
	Slide 16: Procedure of Conspirator
	Slide 17: Procedure of Conspirator
	Slide 18: ML Scheduling on Accelerators
	Slide 19: High-Level Ideas in Scheduling
	Slide 20: Conspirator Implementation
	Slide 21: Evaluation
	Slide 22: Evaluation Setup
	Slide 23: Evaluation Setup
	Slide 24: Evaluation Setup
	Slide 25: Evaluation Setup
	Slide 26: End-to-End Duration
	Slide 27: End-to-End Duration
	Slide 28: Cost Efficiency
	Slide 29: Scheduling Benefits
	Slide 30: Conclusion
	Slide 31:

