
DUST: Resource-Aware Telemetry Offloading with
A Distributed Hardware-Agnostic Approach

Mehrnaz Sharifian∗‡, Diman Zad Tootaghaj�, Chen-Nee Chuah∗, Puneet Sharma�

�Hewlett Packard Labs, ∗UC Davis, ‡Hewlett Packard Enterprise (Aruba Networks)

Abstract—In-device network monitoring has emerged as a
promising alternative to centralized telemetry for gaining insights
into the status and behavior of network devices. Despite its
advantages of providing in-depth device telemetry and predicting
failures in advance, it can impose substantial computational
and storage burdens, potentially hindering networking devices’
core switching and bridging functions. In light of this chal-
lenge, DUST system is introduced to dynamically distribute and
offload in-device monitoring tasks by harnessing the available
computational resources across network nodes. It is designed
to be hardware-agnostic, making it deployable on switches,
servers, DPUs, SmartNICs, and other relevant devices. Our initial
experiments on a real data center testbed indicate that DUST can
reduce CPU utilization by up to 50% and memory usage by up
to 15% in the context of in-device monitoring workloads.

We present a comprehensive system architecture that encom-
passes various nodes and discuss the flow of packets and message
communications. To tackle one of the primary challenges posed
by DUST—namely, the optimal relocation of computations while
considering network performance constraints and controllable
routing decisions—we mathematically formulate the problem
as an Integer Linear Program (ILP), along with a heuristic
algorithm to reduce the computational complexity. We thoroughly
examine the effectiveness and scalability aspects of our algorithms
by considering various network sizes and use cases.

Index Terms—network telemetry, monitoring offload, data
processing units, optimization, scalability

I. INTRODUCTION

Network monitoring is undeniably a crucial facet of network

deployment. However, recently, its significance has intensified

due to the considerable surge in network complexity, the

intricacies of management, heightened security considerations,

and the need for effective anomaly detection. Furthermore,

monitoring the scaled-up traffic poses a myriad of chal-

lenges, including relentless traffic growth, device diversity,

and load imbalances [1]. Traditionally, network monitoring

was predominantly carried out in a centralized fashion, uti-

lizing methods such as direct streaming telemetry, which

involves collecting real-time monitoring data from network

devices and transmitting it to a remote centralized location

[2]. However, conventional network monitoring methods are

limited by switch performance. Measurement process by itself

adversely affects the device status and network state, resulting

in inaccurate monitoring data. Thereafter, the emergence of

software-defined measurement methods (SDN [3] and PDP

[4]) has significantly increased the programability of network

devices’ control plane and data plane [5]. While software-

defined measurements reshaped the traditional measurement

approaches, its administrator’s ability to manage the network

devices themselves yet relies on centralized and legacy mech-

anisms such as SNMP, sFlow, Netflow, etc., [6] and limited

information accessible via standardized MIB. However, as

networks grow in size and complexity, these constraints bring

up more controversial issues. Recently, in response to the

challenges posed by large-scale networks with diverse device

capacities, distributed monitoring approaches incorporating

machine and deep learning analytics have emerged as promis-

ing solutions within the realm of networking [7]. However,

the unavoidable challenges persist in the form of high com-

putational demands and time consumption associated with

centralized management locations, where data aggregation and

machine learning operations take place.

In contrast to centralized monitoring, in-device network

telemetry leverages the ’network device’ compute to empower

analytics in a distributed architecture. It allows for detailed

observation and data collection precisely where user traffic tra-

verses. It eliminates the extensive data traversal throughout the

network and supports advanced applications such as multi-path

reconstruction, dead-hop detection, and localization of latency

bottlenecks acquired in case an anomaly is detected. Conse-

quently, it facilitates the collection of usage-based, scaled, and

fine-grained monitoring data, enabling real-time data collec-

tion, processing, and action [8], [9]. While obtaining detailed

insights through network monitoring is valuable, in-device

monitoring comes with computational and storage demands

that can hinder the core switching and bridging functions

of network devices. By consuming device capacity, existing

telemetry faces the dilemma between resource efficiency (i.e.,

low CPU, memory, and bandwidth overhead) and full accuracy

(i.e., error-free and holistic measurement) [10].

Conversely, even though certain nodes running in-device

network monitoring face resource constraints, there are am-

ple computing resources available in high-performance and

industry-leading devices throughout the network. Discard-

ing these resources would not be cost-effective for users.

Additionally, collaborations between network switches and

smart fabrics, such as Data Processing Units (DPUs), have

led to the emergence of a new category of network switch

solutions known as Distributed Services Switches (DSS) [11].

These DSS solutions offload essential functions from network

switches to DPUs, including Deep Packet Inspection (DPI),

stateful firewall, and load balancing. By leveraging this in-

novative technology, we believe that in-device telemetry is a

919

2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

979-8-3503-6460-6/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPSW63119.2024.00161

20
24

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
79

-8
-3

50
3-

64
60

-6
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
SW

63
11

9.
20

24
.0

01
61

Authorized licensed use limited to: Hewlett Packard Enterprise. Downloaded on March 10,2025 at 17:52:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: CPU utilization of monitoring module.

remarkable offloading function to be adopted in future network

devices and DSS switches.

To illustrate the extent of this excessive resource usage,

we evaluated a CPU consumption of a modular in-device

analytic engine on a database-driven network operating system

installed on an enterprise switch [12]. We deployed several

user-defined modular in-device monitoring agents, such as

those monitoring network protocol health, Rx/TX packet rates,

and device CPU and memory utilization. As depicted in

Figure 1, our experiments revealed that the CPU utilization of

the monitoring module reached around 100% average, spiking

to as high as 600% (in 8 CPU cores DUT) when subjected to

20% line-rate VxLAN overlay traffic in a data-center topology.

In this paper, we introduce DUST, an innovative, dy-

namic, and distributed usage-based service telemetry solution

that leverages available computing resources across the net-

work, including (among others) DPUs, servers, and switches.

DUST can be deployed in a hardware-agnostic system, en-

abling network-wide monitoring with in-depth device analysis.

It significantly reduces device resource utilization through

intelligent offloading and dynamic distribution of telemetry

services, making in-device monitoring deployable across all

network nodes. The key contributions of DUST are as follows:

• We propose a comprehensive system architecture that

distributes the network monitoring load from nodes with

high computational loads to nodes with lower loads, min-

imizing data movement costs. Our approach is hardware-

agnostic and can be deployed on SmartNIC DPUs, net-

work switches, and servers.

• Our offloading experiments on a real data center testbed

demonstrate up to 50% savings in computing at scale in

the context of in-device monitoring workloads.

• We also mathematically formulate the optimal workload

distribution problem as an Integer Linear Program (ILP),

targeting minimal response time and prioritizing data

locality for compute vs. connectivity trade-offs.

• We evaluate the performance of the optimization algo-

rithm on networks of varying sizes and compare it to a

heuristic model aimed at simplifying large-scale networks

in terms on parameters such as computational time,

defined Heuristic Failure Rate (HFR), and the number

of hops required to reach the destination.

DUST is a dynamic traffic-aware solution that periodically

monitors the in-device computational load of all nodes and

makes distributed monitoring decisions accordingly. Dis-

tributed monitoring is facilitated through a cloud-based

’DUST-Manager’ module that provides network-wide visibil-

ity and a central point for configuring distributed in-device

telemetry. Our solution provides controllable routes across all

capable nodes and paths with efficient resource utilization,

which can be reallocated for network monitoring. We design

a flexible offloading system, allowing one or multiple nodes

to fully or partially offload the excessive load to one or more

destination nodes simultaneously.

Our approach relies on utilizing the abundant but often

underutilized computing resources present in top-performing

devices across the network. The emergence of DPUs and

diverse computational capabilities in servers and network

switches in data centers and High-Performance Computing

(HPC) support this notion [13]–[15]. However, there is a

concern about fully utilizing the expensive resources available

in HPCs. A study of NERSC’s Perlmutter, a state-of-the-art

open-science HPC system [16], revealed that a quarter of CPU

node-hours achieved high utilization, while GPU-accelerated

nodes were utilized for only 0-5% of the node-hours [17].

These issues are typical in HPC systems where resources are

primarily assigned on a per-node basis, hindering co-located

workload interference.

II. RELATED WORKS

Previous research in the field of in-device and distributed

network telemetry has explored a variety of approaches to

extend and apply these technologies. Several studies have

focused on distributed network monitoring, addressing the

challenges of monitoring large-scale networks across wide

geographical areas or systems inherently distributed in nature

[5], [6], [8], [10], [18]–[25]. In [18], the authors developed

a robust algorithm known as RoDic to tackle the flow-size

computation problem while distributing network telemetry in

a stateful manner. However, their approach does not adequately

address the issue of selecting the optimal target node across

the network with available spare resources. Additionally, this

approach assumes that flows traverse between source and

destination nodes regardless of network routing considerations.

Li et al. [19] also used a distributed monitoring approach in

their work, but they faced difficulties in computing the optimal

solution for reasonably sized networks. They eventually re-

sorted to comparing three heuristic algorithms. Their problem

formulation did not consider dynamic resource utilization,

capabilities of nodes, controllable route decisions for optimal

placement, or flexible offloading approaches. In UDAAN [6],

the authors implemented an in-device network monitoring sys-

tem that includes user-defined analytic applications. Despite

addressing various device-level use cases and proposing a

framework for telemetry abstractions, their architecture did

not thoroughly evaluate the resource-intensive downside of

UDAAN-Local or propose a solution to address it. Authors

of [10] designed OmniMon, a re-architecturing of network

telemetry solution to address the trade-offs between resource

efficiency and full accuracy. However, the proposed scheduler-

based approach does not address the scalability concern of

network telemetry, and still needs more resources to achieve

their predefined objective of ’full accuracy’. Moreover, the

split-and-merge solution lacks any optimal node selection for

920

Authorized licensed use limited to: Hewlett Packard Enterprise. Downloaded on March 10,2025 at 17:52:33 UTC from IEEE Xplore. Restrictions apply.

distributed analytics. Methods such as optimal proactive mon-

itor placement proposed in [20] contain specific assumptions

about IoT devices, such as lossy links being monitored only

by their extremities, resource constrained nodes with limited

capabilities assigned for monitoring, and eventually utilization

of a centralized monitoring mechanism. While many of these

works assume that some destination distribution nodes exist,

we contend that a more thorough investigation is imperative

to ascertain the most optimized selection of target node for

offloading. This aspect plays a crucial role in improving the

distributed analytic implementations in network switches akin

to how it is often deployed in IoT devices [21], [22].

Other papers, such as [5], [8], [23]–[25], have delved into

in-band real-time distributed network telemetry management

with focus on mitigating packet loss and reordering issues

[23], and approximation techniques, as seen in PINT for

reducing in-band telemetry overhead [24], or HPCC for study-

ing congestion control aspects [25]. While In-band network

telemetry has been extensively researched in academia, its im-

plementation in the industry faces constraints and performance

overhead, such as growing packet sizes [8].

Our contribution is centered around the concept of offload-

ing in-network usage-based analytics for hardware-agnostic

and heterogeneous nodes. To fully utilize the available com-

pute resources of the network, we have proposed a corre-

sponding routing control solution. It considers the dynamic

state of the network and optimizes the response time (cost) ac-

cordingly. Previous methods for distributed in-device telemetry

have primarily focused on IoT devices and have utilized out-

dated sampling-based telemetry. Additionally, they deployed

permanent third-party aggregators (poller) for distribution,

resulting in recurring costs to the network irrespective of node

capacity, underutilized resources, network status, and routes.

III. PROPOSED SOLUTION

Our DUST architecture, depicted in Figure 2, is versatile and

can be deployed across various network topologies. However,

our initial efforts have been focused on data center networks

due to their time-sensitive applications and the critical role of

swift troubleshooting facilitated by network telemetry services.

Data centers have become a primary arena for the deployment

of DUST, driven by the rapid adoption of DPUs [26], and

as they can offload network functions from servers [27].

Major cloud providers such as Google Cloud Platform (GCP),

Azure, and AWS have already integrated DPUs into their data

center infrastructures to offload select network and RDMA

functions, thereby freeing up valuable resources for application

workloads [28]–[30]. DUST capitalizes on the availability of

additional compute resources within the network, which can

be harnessed by analytic engines. This allows for in-device

monitoring or remote monitoring from neighboring devices

via protocols like REST [31], gRPC [32].

A. DUST System Architecture

As demonstrated in Figure 2, the ’Service Controller’ and

Optimizer’ play crucial roles in the selection of nodes for

Fig. 2: DUST system architecture.

hosting the in-device DUST node cluster. Simultaneously, the

’Time-Series Federation’ component performs the essential

task of aggregating data throughout the underlying network.

Our ’Network Monitor Service’ (NMS) can initiate network

monitoring either based on user input or through automated

triggers. NMS collects a comprehensive set of metrics for the

service and then transmits the pertinent information to the

DUST client, effectively creating a ’Monitor Agent’ for each

required metric. These Monitor Agents continuously monitor

updates within specific database (DB) tables on network

devices and subsequently update the associated time series

data. The ’Time Series Database’ (TSDB) efficiently stores

the metrics and rules established by these Monitor Agents. Our

system includes in-situ data compression and packet parsing

capabilities in SmartNICs, which aid in reducing data transfers

and improving end-to-end performance.

B. DUST System Nodes and Workflows

The main components of DUST are DUST-Client and

DUST-Manager, as shown in Figure 3. In the following, we

will explain in more detail each component of DUST.

DUST-Manager: A decision node defines the most op-

timized destination monitoring node by evaluating network

resource utilization, monitoring capabilities, and the number

of monitoring agents. It includes Network Monitoring Data
Base (NMDB) and Optimization Engine to place the moni-

toring processes and workloads. NMDB is a database used

for keeping the current network status and utilization (e.g.,

network typologies, link utilization) and nodes’ monitoring

and offloading capabilities (e.g., resource utilization, number

of user-defined monitoring requests, offloading capabilities and

variables, etc.). Optimization engine deploys the network and

monitoring states provided by and stored in NMDB to allocate

the optimized node for running monitoring agents.

DUST-Client: It can be deployed on switches, servers, or

any available compute resources such as DPUs across the

network. Based on resource utilization and configurations,

nodes’ roles are defined as Busy nodes, Offload-candidate
nodes, None-offloading nodes, and Offload-destination nodes.

To determine the roles of clients within the network, each

monitoring node initially sends an Offload-capable message

to DUST-Manager. In this message, a value of ’1’ signifies

the node’s willingness to participate in offloading, while ’0’

indicates its status as a None-offloading node. Subsequently,

921

Authorized licensed use limited to: Hewlett Packard Enterprise. Downloaded on March 10,2025 at 17:52:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: DUST system nodes and packet flows.

DUST-Manager responds with an ACK message to each client

engaged in the offloading process. Following this acknowledg-

ment, these nodes are assigned distinct roles based on their

dynamic capabilities. Busy node is defined as a client node

whose resource utilization exceeds its user-defined threshold,

denoted as Cmax. Each client node initially conveys its Cmax

value to DUST-Manager, representing the maximum resource

capacity that the node can sustain without requiring offload-

ing. Conversely, DUST-Manager identifies Offload-candidate
nodes as client nodes with resource utilization below their

designated threshold, referred to as COmax. These thresholds

determine the maximum acceptable resource utilization for a

node to be considered as a candidate for offloading. In simpler

terms, a node is designated as an Offload-candidate by the

Manager if its current resource utilization is lower than the

previously defined COmax value. Lastly, Offload-destination
nodes are nodes designated to host the monitoring workload

originally assigned to one or more Busy nodes.

For a dynamic and lossless offloading process in our system,

client nodes send periodic STAT messages to the Manager

node. These provide real-time updates on the client’s usage

of device services and monitoring, regardless of their current

status. The frequency of these updates is determined by the

Update-Interval Time, setting by the Manager’s ACK message.

This enables a Busy node to reclaim its local resources when

they become available, while an Offload-destination node can

redirect the workload to another node if it becomes busy.

Our solution utilizes user-defined interval times, typically in

minutes, which align with the recommended collective interval

times of enterprise networks and telemetry tools like Cisco,

VMware, and Palo Alto Networks [33]–[35]). This approach

allows for a better average view of the network’s state while

the optimization engine evaluates the offloading process re-

quirements and determines the offload-destination nodes and

controllable routes towards them. Lastly, the transition state is

initiated upon acknowledgment of destination nodes.

DUST Monitoring Placement Workflow: When a Busy

node is detected, DUST-Manager initiates the monitoring

offloading distribution process by deploying the optimization

engine (discussed in the following section). The optimization

engine determines the Offload-destination nodes, which are

then notified by the Manager node through an Offload-Request
message, followed by an Offload-ACK. Monitoring data, de-

noted as Di and originating from a Busy node, is subsequently

redirected toward the acknowledged Offload-destination node.

C. Post-offloading Process in DUST

Following a successful offloading operation, we define post-

offloading processes designed to uphold system performance

while simultaneously monitoring the health status of the

offloaded workloads.

QoS Guarantees: Monitoring data offloaded to a remote

node is assigned the lowest priority value, ensuring a guaran-

teed quality of service for the remote node. This prioritization

allows for the monitoring data to be safely discarded in the

event of network congestion or overload. Consequently, remote

nodes participating in the offloading process are not expected

to experience any traffic loss.

Offload-destination Node Status: Offload-destination node

needs to send Keepalive message to DUST-Manager and verify

its offloading operational state for remote monitoring of a

Busy node. As a result, the malfunctioning destination-node

is diagnosed and substituted with a replica node. Manager

notifies this node by sending it a REP message.

IV. NETWORK MONITORING PLACEMENT

In this section, we tackle the challenge of selecting the

optimal destination node for offloading monitoring tasks from

heavily burdened nodes. To address this, we formulate the

Minimum Cost Optimization Problem as an Integer Linear

Programming (ILP). Given the high computational complexity

of our problem, we also propose a heuristic algorithm to

efficiently solve it in large-scale networks. As one of the key

contributions, our algorithms determine a controllable route

solution by evaluating all potential paths between each Busy

node and the designated Offload-candidate nodes. We leverage

data sourced from NMDB to facilitate DUST-Manager in

identifying Busy nodes and potential Offload-candidate nodes.

Subsequently, our optimization engine selects the destination

node while prioritizing the shortest response time route to it.

A. Assumptions and Objectives

Before delving into our solution and algorithm, we define

its assumptions and optimization objectives are as follows.

Assumptions: Data center, WAN, and backbone networks

are the most stable networks by deploying high performance

computing servers along with efficient switches and high

availability nodes. However, these networks are vigorously

vulnerable to extensive transient server workloads and data

planes across the network. Thus, network monitoring is re-

quired to detect and localize the overloaded failures caused

by either primary device functionality or its monitoring duties.

We assume all nodes participating in the offloading process

carrying monitoring tasks, and willingness to get offloaded

in case of overloading. In our assumption for DUST as a

usage-based device telemetry, data collection, monitoring, and

922

Authorized licensed use limited to: Hewlett Packard Enterprise. Downloaded on March 10,2025 at 17:52:33 UTC from IEEE Xplore. Restrictions apply.

any further alerts or actions are assumed to be real-time and

continuous tasks. We assume a stable network with overloaded

nodes (Busy nodes) that are candidates for offloading to

reachable remote nodes (Destination nodes). Likewise, stable

(none-overloaded) nodes exist initially in the network with

the probability of getting overloaded as a result of launching

scaled user-defined device telemetry. Thereupon, all network

nodes can be monitored with corresponding reachable nodes

while priority is within closer nodes to achieve our objective

of minimum response time. For better use of the network and

optimization resources, in the large-scale network, max-hop

is assumed and evaluated in accordance with the network

use case and applications’ required response time. Given

the diverse functionality and platform capability of network

devices, we assume custom-defined values for COmax and

Cmax, reflecting node deployment and persona. Subsequently,

the utilized resource of the Offload-candidate node is retained

below COmax to maintain its primary tasks in addition to the

offloaded monitoring workloads of a Busy node, before getting

overloaded itself. Equivalently, offloading of a Busy node

is assumed whenever its resource utilization is at or higher

than Cmax for most usage of switch capacity. We assume

that distributing the monitoring task is managed centrally

with DUST-Manager while monitoring itself, data collection,

processing, and aggregation, are achieved in a distributed

device-level approach. By offloading monitoring task capa-

bilities of a Busy node to remote nodes, zero computational

load associated with transferring monitoring workloads over

relay nodes is assumed to retain the dynamic state of relay

nodes unchanged throughout a given offloading process. As

a resource awareness system, device persona and status are

assumed to be provided to DUST-Manager. We assume a

homogeneity between source-overloaded nodes and selected

nodes for offloading. Thus, offloading monitoring agents from

the source node raises equivalent resource utilization in the

destination node. It is noteworthy that the assumption of

homogeneity does not negate the presence of heterogeneous

node capabilities of DUST. The aforementioned assumption

was made to simplify our optimization algorithm and based on

the unavailability of ’scaled’ data center nodes with offloading

capability. In industry implementations, it can be adjusted with

a coefficient factor relating two endpoint platform capacities.

Objectives: In distributing the network monitoring tasks,

we tackle the challenge of selecting the optimal destination

nodes and path towards it considering the minimum response

time objective. Overloaded nodes’ monitoring tasks are of-

floaded to a remote node with minimal hops distance priority

whenever minimum response time is achieved. Similarly,

minimal response time path and destination node are selected

whenever a solution with the equivalent number of hops

exists. Thus, bandwidth usage and data movement across relay

nodes are minimized. Consequently, monitoring the workload

placement of one Busy node by selecting one or multiple

optimized remote nodes is applicable. The same objective is

considered when multiple nodes are associated with offloading

one excessively overloaded Busy node, attributing the flexible

offloading objective of our proposed solution. The objective is

to detect the potentially overloaded nodes (Busy node) while

the node is not overloaded but efficiently utilized, and hereafter

dynamically offload and redistribute all extra workload to a

destination node while not overloading it.

B. Optimization Model Definition

Given an undirected graph G = (V,E), where V is the

set of nodes and E is the edges connecting the nodes, the

goal is to select a subset of nodes from the set of Offload-

candidate nodes, Vo, to efficiently offload monitoring tasks

of Busy nodes, Vb, with minimum cost. We assume zero

computational loads associated with transferring monitoring

workloads over relay nodes (v /∈ Vb ∪ Vo) to a destination

node. We define xij to be the continuous decision variable

of offloading xij amount of the monitoring tasks capacities

from the Busy node i ∈ Vb to the Offload-candidate node

j ∈ Vo. Let Cj be the percentage of the node j’s utilized

capacity. The network monitoring process compares Cj with

respect to Cmax and COmax to identify node j as a Busy

or Offload-candidate node. We define Cmax and COmax as

maximum node capacity to be considered as Busy node and

Offload-candidate node, respectively. We consider pre-defined

values for Cmax and COmax to use max resources of Busy

nodes, while not overloading the monitoring destination nodes

computation after offloading. Consequently, a node is defined

as a Busy node by DUST-Manager if its utilized capacity is

greater than the predefined value Cmax. Similarly, a node is

defined as an Offload-candidate node if its utilized capacity is

lower than the predefined value COmax. In our formulation,

Vo denotes the set of Offload-candidate nodes ∀o ∈ V
if Co ≤ COmax while Vb denotes the set of Busy nodes

∀b ∈ V if Cb ≥ Cmax.

Furthermore, we use the notation Di to represent the volume

of usage-based in-device monitoring data to be offloaded and

transferred to a remote destination node, measured in megabits

(Mb). We denote Lui,j as the utilized bandwidth, expressed in

megabits per second (Mbps), between each pair of nodes i and

j. This parameter reflects the total data plane traffic flowing

across the network through the edge ij. It is determined

by multiplying the physical link bandwidth and the dynamic

utilization rate resulting from the data in transit.

Additionally, we define Tri,j as the response time, mea-

sured in seconds, between nodes i and j. This metric quantifies

the speed at which monitoring data traverses the network.

Thus, we calculate Tri,j as the sum of the response times

for all available routes to the destination. Specifically, it is

computed as Di(Mb)
Lui,j (Mbps)

across all potential paths.

In our consideration of controllable routes, we account for

all feasible paths between a Busy node b ∈ Vb and an Offload-

candidate node o ∈ Vo, denoted as p = {r1, r2, ..., rn}. Here,

each ri comprises the edges forming the ith path, represented

as ri = {ek − el − em}, while another path might be denoted

as rj = {en − eo}, and so on.

An illustrative example: To further clarify the discussion,

consider the network topology in Figure 4 with 7 nodes

923

Authorized licensed use limited to: Hewlett Packard Enterprise. Downloaded on March 10,2025 at 17:52:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Network with one busy node (red) and two offload-

candidate nodes (yellow)

TABLE I: SUMMARIZATION OF NOTATIONS.

Notation Explanation

G = (V,E) an undirected graph where V represents the set of nodes
and E is the set of links in graph/network topology G

xij Continuous optimization decision variable

Cmax (%) Busy node’s threshold capacity

COmax (%) Offload-candidate node’s threshold capacity

Cj (%) Utilized capacity of node; ∀j ∈ V
Di(Mb) Monitoring data of node i; ∀i ∈ V
Lui,j(Mps) Link utilization bandwidth between node i to j
p Set of all reachable paths between each pair nodes i and j

∀i ∈Vb and ∀j ∈Vo

Tri,j Response time (in seconds) between each node i and j
Trmin,i,j Minimum response time (in seconds) between each node i

and j among all paths p
Xmin Nodes’ minimum usage capacity

Cs Total resources to be offloaded from Busy nodes

Cd Total available resources of Offload-candidate nodes

β Optimization objective

and 7 edges. In this scenario, we have a single Busy node

(S1) and two Offload-Candidate nodes (S2 and S6). Our

objective is to determine the optimal destination and route

for offloading the excess workload from node S1 to either S2,

S6, or both. Our solution offers flexible offloading, allowing

a Busy node to be offloaded either partially or entirely to one

or more Offload-destination nodes. Similarly, it supports the

simultaneous offloading of multiple Busy nodes to a single

Offload-destination node. For illustration, let’s define four

potential routes: r1 = {e1 − e2}, r2 = {e1 − e3 − e4},

r3 = {e1 − e3 − e4 − e7 − e2}, and r4 = {e1 − e7} . We

can now form a set p containing these routes, denoted as

p = {r1, r2, r3, r4}, to explore the optimal offloading.

Further, variable Csi is defined to be the amount of extra

load for each Busy node i that needs to be offloaded to the

Offload-candidate nodes. Thus, the total load to be offloaded

in the system is equal to Cs =
∑

i∈Vb
Csi. Similarly, Cdj is

defined as the available capacity of an Offload-candidate node

j. Thence, every offload candidate node j can contribute to the

offloading process with its Cdj spare capacity, and total avail-

able resources in the system are defined as Cd =
∑

j∈Vo
Cdj .

Table I summarizes the notations of our formulation.

C. Optimization Formulation

In our model, we define the response time for data move-

ment from each Busy node i to an Offload-candidate node j
as Tri,j , as expressed in Equation 1. The response time is

computed based on the amount of monitoring workload Di

being transferred across all edges on the selected path rk.

Tri,j(rk) =
∑

∀e∈rk

(
Di

Lue
(sec)) ∀i ∈ Vb, ∀j ∈ Vo, ∀rk ∈ p

(1)

where p is the set of all paths between i and j, p =
{r1, r2, ..., rn} ; and rk consist of the edges on that paths.

Further, we introduce Trmin,i,j to identify the minimum re-

sponse time between each pair nodes {i,j} among all possible

paths p for ∀i ∈ Vb, j ∈ Vo, respectively (Equation 2).

Trmin,i,j = Minrk∈p(Tri,j(rk)) ∀i ∈ Vb, ∀j ∈ Vo (2)

The constrained network offload optimization problem

(min-cost) aims at minimizing the monitoring data transfer

costs, which can be formulated as follows:

Minimize β =
∑

i∈Vb

∑

j∈Vo

xij ∗ Trmin,i,j

subject to
∑

i∈Vb

xij ≤ Cdj ∀j ∈ Vo (3a)

∑

j∈Vo

xij = Csi ∀i ∈ Vb (3b)

Csi = Ci − Cmax ∀i ∈ Vb (3c)

Cdj = COmax − Cj ∀j ∈ Vo (3d)

Ci ∈ [xmin, 100] ∀i ∈ V (3e)

Constraint 3a shows that the volume of monitoring data

eligible for offloading from all Busy nodes to an Offload-

candidate node j must not exceed its available spare capacity

denoted as Cdj . As a result, our distributed solution does

not overload a destination node while offloading one/multiple

Busy nodes. Constraint 3b shows that the total amount of load

offloaded from a Busy node i should be equal to its total load

that needs to be offloaded. In our formulation, for each Busy

node i, we define Csi as the difference between Ci and a

predefined value Cmax (as shown in 3c). Similarly, for each

Offload-candidate node j, we define Cdj as the difference

between a predefined value COmax and Cj (as indicated in

3d). This signifies that each Offload-candidate node j can

contribute to offloading based on its available spare capacity

Cd. The amount of node capacity for the ones partitioning in

offloading is assumed between a minimum value of xmin and

a maximum value of 100, constraint 3e. Depending on the

node function, platform capability, and its average minimum

resource utilization in the network, xmin is adaptable.

D. Heuristic Algorithms

To solve the minimum cost offload problem in large-scale

networks and in a time-efficient manner, we also design a

heuristic algorithm shown in Algorithm 1. Heuristic algorithm

starts with selecting all available Busy nodes, Vhb, and their

corresponding utilized capacity, Ck for ∀k ∈ Vhb. Here, we

use the same metrics to define Busy nodes, Ck ≥ Cmax, and

workloads to be offloaded, Csi = Ck − Cmax. However,

in the heuristic algorithm, Offload-candidate nodes, Vhoj ,

are distinctly being selected for every Busy node, Vhbi, and

within its directly connected node with available compute

924

Authorized licensed use limited to: Hewlett Packard Enterprise. Downloaded on March 10,2025 at 17:52:33 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Heuristic Algorithm of min-cost problem

1 for every node k ∈ V of graph G = (V,E) and node capacity Ck

do
2 Determine set of Busy nodes, Vhb = {Vhb0, Vhb1, ..} if Ck

≥Cmax

3 for every Busy node i ∈ Vhb do
4 Determine set of Offload-candidate nodes,

Vho = {Vho0, Vho1, ..}, including every node j if Cj

≤COmax and within shortest path of max-hop=1 to a
given Busy node Vhbi

5 Calculate Csi = Ci - Cmax

6 for every Offload-candidate node j in set Vho , calculate
Cdj = COmax − Cj do

7 Define continuous optimization decision variable Xij

for every given Busy node i and within its
Offload-candidate nodes set Vho do

8 Minimize β (Equation 3) for defined heuristic set
of nodes and Xij

resources, if exist. In other words, every Vhbj is merely

offloaded to one-hop accessible Offload-candidate nodes of

that Busy node. While the optimization algorithm can offload

monitoring workload to n-hop distance for every Busy node,

in the heuristic approach, there is a probability of (partial

or full) failure in offloading with minimum cost next-hop

problem. To evaluate the offloading performance by deploying

the heuristic algorithm, we defined Heuristic Failure Rate

(HFR) as the ratio of resources that failed to be offloaded

in heuristic selection to the total of resources required to be

offloaded at any given network state. As indicated in Equation

4, for every Busy node i, Csei is defined as the amount of

resources incapable of getting offloaded to its one-hop distance

Offload-candidate node.

HFR(%) =

∑
i∈Vhb

Csei∑
i∈Vhb

Csi
∗ 100 (4)

Complexity Analysis: With p defined as feasible routes

between each desired pair of nodes {i,j}, and the objective

of our optimization algorithm to minimize β (Equation 3),

let F (|p|) be the time complexity of moving data between

nodes. In a k-port fat-tree topology, maximum |p| between

each node pair can be in the order of k2 [36]. Assuming a

situation with all k(k + 1) nodes actively being either Busy

nodes or Offload-candidate nodes, F (|p|), time complexity of

optimization computation can be in the order of k4(k+1)2 ≈
k6. In order to reduce the optimization complexity for large

sized networks, heuristic algorithm is proposed and evaluated

in response to various network sizes. By limiting the number

of Offload-candidate nodes for each Busy node to solely one-

hop paths offloading destinations, F (|p|) for our heuristic

algorithm reduced to k2(k+1) ≈ k3. Our results show that it

drastically decreases the computation time of algorithms and

consequently the offloading process.

V. PERFORMANCE EVALUATIONS

We deployed two distinct testbeds to assess our compre-

hensive system-level solution. The first testbed, explained in

Fig. 5: Test bed topology

(V-A), consisted of a real prototype with a VxLAN data

center topology and commercial enterprise switches with

support for in-device telemetry. This testbed aimed to repli-

cate a production environment, taking into account all the

subtleties and practical and operational constraints of nodes

with heterogeneous capabilities in real-world industry-scale

hardware. Additionally, we implemented a simulator using the

Gurobi optimization toolkit to address the scalability of our

optimization algorithms. This simulator, (V-B), can evaluate

the proposed approach for large-scale networks.

A. DUST Offloading Analysis and Evaluation

To evaluate the performance advantages of delegating mon-

itoring computations, we implemented analytic engines in a

data center architecture, illustrated in Figure 5. This topology

employs modular in-device analytic engines (Python-based)

installed on the network OS of a commercial enterprise switch,

HPE Aruba 8325 with 8 CPU cores, 16 GB RAM, and

64GB SSD disk specifications [12]. Moreover, 10 user-defined

monitoring agents are installed on the device for monitoring

critical features of the deployed testbed1. We then analyzed

device resource utilization in scenarios where user-defined

monitoring agents were offloaded remotely using DUST and

conducted a comparative analysis between local monitoring

and offloaded mechanisms.

As illustrated in Figure 6a and Figure 6b, our results demon-

strates a substantial average CPU and memory reductions

of 52% (from 31% to 15%) and 12% (from 70% to 62%),

respectively. In this set of experiments, retaining around 1.2

GiB memory usage indicates that monitoring workloads are

perfect offloading candidates for network switches.

B. DUST Scalability Analysis and Evaluation

We evaluate the scalability of DUST proposed optimization

algorithm in two defined network sizes, namely small-scale

and large-scale networks. We implemented our network mon-

itoring offload algorithms in Python and by Gurobi optimiza-

tion toolkit [37], on a 6-core, 2.60 GHz, 16 G RAM cluster.

A small-scale network is characterized as a network, data

center pod, or network zone comprising 20 or fewer network

1Agents named as routing protocols, software and network health, software
functions and system resource utilization e.g., CPU/Memory, Rx/Tx packet
rates on interfaces, link states, system temperature and hardware health, fault
finder (such agents are prevalent and described in other works e.g. [6]).

925

Authorized licensed use limited to: Hewlett Packard Enterprise. Downloaded on March 10,2025 at 17:52:33 UTC from IEEE Xplore. Restrictions apply.

(a) Avg. resource utilization. (b) Total resource utilization.

Fig. 6: Memory and CPU resource utilization comparison in DUST and local monitoring.

nodes. In our experiments, it’s equivalently represented as

a three-level 4-k port fat-tree topology with 20 nodes and

32 edges. Conversely, a large-scale network is defined as a

network or data center architecture with more than 20 network

nodes. We classify fat-tree topologies with 8-k, 16-k, and 64-

k ports as large-scale size networks with 80, 320, and 5120

nodes along with 256, 2048, and 131072 edges, respectively.

• Small-Scale Network Evaluation: We selected fat-tree

4-k ports for performance evaluations of small-scale networks

in addition to analysis of some optimization algorithm’ set-

tings. To increase the probability of a ’feasible’ optimization

solution, we define the Δ parameter as follows:

Δio =
Δo

Δb
=

COmax − xmin

100− Cmax
, Δio ≥ Kio (5)

This parameter assists the user in selecting optimal user-

defined values for Cmax and COmax, and improves the effi-

ciency of offloading and optimization processes by reducing

the rate of impossible optimization. As shown in Figure 7,

our experiments in the 4-k port topology, conducted over 1000

iterations, reveal an Infeasible Optimization (io) Rate ranging

from 0.2% to 69%, with Δio falling within the range of 3.5 to

0.8, respectively. These results suggest setting the user-defined

Kio value (related to Cmax, COmax, and xmin) to be greater

than or equal to 2. It aims to reduce the failure rate in the

optimization process of a given network system. However, it

is important to note that excessive increase of optimization

parameters, such as Cmax and COmax, and consequently

Δio, can lead to a higher likelihood of overloaded nodes and

potential network downtime.

Assuming that Δio falls within the recommended range, we

conducted measurements of computation time, averaged over

100 iterations on the small-scale topology as depicted in Figure

8. The results reveal that with no max-hop limit defined, the

maximum computation time for optimization remains below

3.5 seconds. This finding underscores the suitability of a small-

scale network of this size for accommodating time-constrained

applications. When considering a threshold time value of 0.5

seconds, a recommended max-hop of 10 in the 4-k architecture

is suggested. The strict threshold time requirement on the order

of less than a second is necessary for facilitating the execution

of multiple parallel optimization processes within DUST-

Manager in addition to the actual offloading and rerouting

Fig. 7: Infeasible Optimization rate

Fig. 8: Computation time in 4-k fat-tree,Δio = 2

Fig. 9: Success rate comparison of optimization and heuristic

baseline algorithm in 4-k port

of monitoring workloads processes. The choice of max-hop

count may need to be reevaluated based on different Service

Level Agreements (SLAs) and network requirements.

In our evaluations of over 100 iterations, we found that

heuristic algorithms were able to offload all overloaded net-

926

Authorized licensed use limited to: Hewlett Packard Enterprise. Downloaded on March 10,2025 at 17:52:33 UTC from IEEE Xplore. Restrictions apply.

(a) 8-k ports fat-tree network (b) 16-k ports fat-tree network

Fig. 10: DUST ILP optimization computation time in large-scale network equivalent of (a) 8-k and (b) 16-k ports fat-tree.

(a) HFR (%) rate.

(b) Average optimization time (sec).

Fig. 11: scalability evaluation (a) HFR rate of heuristic algo-

rithm (b) average computation time of optimization algorithm.

work nodes in 18.37% of iterations where destination nodes

were within one-hop distance, Figure 9. In 6.13% of iterations,

heuristic algorithms could not offload any overloaded nodes,

but optimizations were successful. The remaining 75.5% of ex-

periments showed that heuristic algorithms partially offloaded

some nodes, with the remaining offloaded by optimization.

This demonstrates the trade-off between optimization and

heuristic algorithm deployment, especially considering the

higher cost of optimization in the customer field.

• Large-Scale Network Evaluation: In this section, we

conducted a performance evaluation of the DUST optimization

ILP offloading algorithm in large-scale networks and com-

pared the results with those obtained in small-scale networks.

The evaluation was based on a threshold response time value

of 300 seconds, and the recommended max-hop values were

determined as 7 for 8-k ports (Figure 10a), and 4 for 16-k ports

(Figure 10b). By increasing the max-hop value from 4 to 5 in a

16-k ports network comprising 320 nodes resulted in a tenfold

Fig. 12: Scalability evaluation of heuristic algorithm

increase in the average computation time. In conclusion, the

number of hops is a significantly decisive and cost-effective

optimization parameter in large-scale networks.

In Figure 11, a scalability comparison is presented between

the optimization computation time and the HFR rate of a

heuristic algorithm. Figure 11a shows that the HFR rate de-

creases from 47.92% to 11.04% as the network scale increases.

Particularly in our evaluated testbed, this decrease can be

estimated with a negative power function of ∼(-0.5). On the

other hand, the average optimization time increases from 0.2

seconds to over 153 seconds, Figure 11b. This indicates that

as the network scale grows, the heuristic algorithm can gain

an advantage over optimization one by reducing the HFR rate.

Based on the metrics and findings presented in this paper,

we suggest dividing large-scale networks into zones containing

a maximum of 80 nodes. This approach has an acceptable

optimization cost of 0.8 seconds for a max-hop value of 7

nodes for destination nodes. For larger networks, as depicted

in Figure 12, the heuristic algorithm performs significantly

better than the optimization algorithm, with an execution time

of 124 seconds observed in a network with 5120 nodes.

VI. CONCLUSION AND FUTURE WORK

The paper proposes a system-level solution for conserving

resources in network switches by offloading telemetry ser-

vices and deploying compute resources across the network

to overcome the issue of resource-intensive in-device analytic

engines. The suggested solution actively identifies heavily

utilized nodes and redistributes monitoring resources to an

optimal device, guided by controllable routes defined through

927

Authorized licensed use limited to: Hewlett Packard Enterprise. Downloaded on March 10,2025 at 17:52:33 UTC from IEEE Xplore. Restrictions apply.

optimization models. Our evaluation of DUST’s practical

applications encompassed two distinct testbeds, wherein we

deployed a genuine industry-scale switch prototype and an

optimization simulator. The experimental results demonstrate

the efficacy of the proposed approaches in terms of response

time cost, scalability, and diverse use cases. Our solution

enables remote offloading to overcome in-device supportability

issues for network devices with lower capacities. It can be

easily integrated into large-scale and cloud-based data centers

and network providers e.g. AFC [38], AMD PSM [39], and our

system has utility in diverse use cases and network services

beyond service telemetry.

ACKNOWLEDGEMENT

This work is supported in part by the funds through the

Child Family Endowed Professorship.

REFERENCES

[1] Vitalii Demianiuk, Sergey Gorinsky, Sergey Nikolenko, and Kirill Ko-
gan. Robust distributed monitoring of traffic flows. In 2019 IEEE 27th
International Conference on Network Protocols (ICNP), pages 1–11,
2019.

[2] Xiaohe Hu, Yang Xiang, Yifan Li, Buyi Qiu, Kai Wang, and Jun Li.
Trident: Efficient and practical software network monitoring. Tsinghua
Science and Technology, 26(4):452–463, 2021.

[3] Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia
Obraczka, and Thierry Turletti. A survey of software-defined net-
working: Past, present, and future of programmable networks. IEEE
Communications Surveys Tutorials, 16(3):1617–1634, 2014.

[4] Roberto Bifulco and Gábor Rétvári. A survey on the programmable
data plane: Abstractions, architectures, and open problems. In 2018
IEEE 19th International Conference on High Performance Switching
and Routing (HPSR), pages 1–7, 2018.

[5] Lizhuang Tan, Wei Su, Wei Zhang, Jianhui Lv, Zhenyi Zhang, Jingying
Miao, Xiaoxi Liu, and Na Li. In-band network telemetry: A survey.
Computer Networks, 186:107763, 2021.

[6] Anu Mercian, Puneet Sharma, Renato Aguiar, Chinlin Chen, and David
Pinheiro. Udaan: Embedding user-defined analytics applications in
network devices. In Proceedings of the 2019 Workshop on Network
Meets AI & ML, pages 70–75, 2019.

[7] Mowei Wang, Yong Cui, Xin Wang, Shihan Xiao, and Junchen Jiang.
Machine learning for networking: Workflow, advances and opportunities.
IEEE Network, 32(2):92–99, 2018.

[8] Odej Kao Anton Gulenko, Marcel Wallschl¨ager. A practical imple-
mentation of in-band network telemetry in open vswitch. In Research
Advances in Cloud Computing, pages 1–4. 2018.

[9] Network telemetry framework, ietf document. Link . [Online; accessed
2024].

[10] Qun Huang, Haifeng Sun, Patrick P. C. Lee, Wei Bai, Feng Zhu,
and Yungang Bao. Omnimon: Re-architecting network telemetry with
resource efficiency and full accuracy. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’20, page 404–421, New York,
NY, USA, 2020. Association for Computing Machinery.

[11] Distributed services switches. Link . [Online; accessed 2024].
[12] Aruba cx 8325 switch series. Link . [Online; accessed 2024].
[13] Diman Zad Tootaghaj, Anu Mercian, Vivek Adarsh, Mehrnaz Sharifian,

and Puneet Sharma. Smartnics at edge for transient compute elasticity. In
Proceedings of the 3rd International Workshop on Distributed Machine
Learning, DistributedML ’22, page 9–15, New York, NY, USA, 2022.
Association for Computing Machinery.

[14] Sean Choi, Muhammad Shahbaz, Balaji Prabhakar, and Mendel Rosen-
blum. -nic: Interactive serverless compute on smartnics. In Proceedings
of the ACM SIGCOMM 2019 Conference Posters and Demos, SIG-
COMM Posters and Demos ’19, page 151–152, New York, NY, USA,
2019. Association for Computing Machinery.

[15] Ming G. Liu. ipipe : A framework for building distributed applications
onmulticore soc smartnics. 2019.

[16] Nersc: Perlmutter. Link. [Online; accessed 2024].
[17] Jie Li, George Michelogiannakis, Brandon Cook, Dulanya Cooray, and

Yong Chen. Analyzing resource utilization in an hpc system: A case
study of nersc’s perlmutter. In Abhinav Bhatele, Jeff Hammond, Marc
Baboulin, and Carola Kruse, editors, High Performance Computing,
pages 297–316, Cham, 2023. Springer Nature Switzerland.

[18] Vitalii Demianiuk, Sergey Gorinsky, Sergey I Nikolenko, and Kirill
Kogan. Robust distributed monitoring of traffic flows. IEEE/ACM
Transactions on Networking, 29(1):275–288, 2020.

[19] L. Li, M. Thottan, B. Yao, and S. Paul. Distributed network monitoring
with bounded link utilization in ip networks. In IEEE INFOCOM 2003.
Twenty-second Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE Cat. No.03CH37428), volume 2, pages
1189–1198 vol.2, 2003.

[20] Basma Mostafa Hassan, Miklos Molnar, Mohamed Saleh, Abderrahim
Benslimane, and Sally Kassem. Optimal proactive monitor placement
& scheduling for IoT networks. Journal of the Operational Research
Society, 73(11):2431–2450, 2022.

[21] Lorenzo Valerio, Marco Conti, and Andrea Passarella. Energy efficient
distributed analytics at the edge of the network for iot environments.
Pervasive and Mobile Computing, 51:27–42, 2018.

[22] Rustem Dautov, Salvatore Distefano, and Rajkumaar Buyya. Hierarchi-
cal data fusion for smart healthcare. Journal of Big Data, 6, 02 2019.

[23] Vitalii Demianiuk, Sergey Gorinsky, and Kirill Kogan. Telenoise: A
network-noise module for in-band real-time telemetry. In 2021 IFIP
Networking Conference (IFIP Networking), pages 1–9, 2021.

[24] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni
Antichi, Minian Yu, and Michael Mitzenmacher. Pint: Probabilistic
in-band network telemetry. In Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’20, page 662–680, New York, NY, USA,
2020. Association for Computing Machinery.

[25] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng,
Lingbo Tang, Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Al-
izadeh, and Minlan Yu. Hpcc: High precision congestion control. In Pro-
ceedings of the ACM Special Interest Group on Data Communication,
SIGCOMM ’19, page 44–58, New York, NY, USA, 2019. Association
for Computing Machinery.

[26] Smartnics vs dpus. Link . [Online; accessed 2024].
[27] Zhen Ni, Guyue Liu, Dennis Afanasev, Timothy Wood, and Jinho

Hwang. Advancing network function virtualization platforms with
programmable NICs. In 2019 IEEE International Symposium on Local
and Metropolitan Area Networks (LANMAN), pages 1–6. IEEE, 2019.

[28] Aws nitro system. Link . [Online; accessed 2024].
[29] Google cloud and intel’s new ipu. Link . [Online; accessed 2024].
[30] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,

Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian
Caulfield, Eric Chung, et al. Azure accelerated networking: Smartnics in
the public cloud. In 15th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 18), pages 51–66, 2018.

[31] Rest protocol. //https://en.wikipedia.org/wiki/Representational state
transfer//. [Online; accessed 2024].

[32] Xingwei Wang, Hong Zhao, and Jiakeng Zhu. Grpc: A communication
cooperation mechanism in distributed systems. ACM SIGOPS Operating
Systems Review, 27(3):75–86, 1993.

[33] Cicso cpu usage critical-level thresholds. Link . [Online; accessed 2024].
[34] Data collection intervals of vsphere monitoring and performance. Link .

[Online; accessed 2024].
[35] Pan-os device telemetry collection and transmission intervals. Link .

[Online; accessed 2024].
[36] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A

scalable, commodity data center network architecture. In Proceedings
of the ACM SIGCOMM 2008 Conference on Data Communication,
SIGCOMM ’08, page 63–74, New York, NY, USA, 2008. Association
for Computing Machinery.

[37] Gurobi optimization. Link . [Online; accessed 2024].
[38] Aruba fabric composer solution overview. Link . [Online; accessed

2024].
[39] Amd pensando policy and services manager. Link . [Online; accessed

2024].

928

Authorized licensed use limited to: Hewlett Packard Enterprise. Downloaded on March 10,2025 at 17:52:33 UTC from IEEE Xplore. Restrictions apply.

