
CAGE:	A	Contention-Aware	
Game-theoretic	Model	for	
Heterogeneous	Resource	

Assignment
Diman	Zad	Tootaghaj Farshid Farhat

The	Pennsylvania	State	University	(US)



2

Why distributed resource 
management approach?

Distributed Centralized



Distributed	Resource	Management

3

Observations:	
Centralized	Approaches:	
As	the	number	of	applications	increase,	centralized	approaches	are	not	
scalable.
The	central	decision	maker	does	not	know	about	the	applications'	need.
Applications	have	different resource	needs.
Applications’	needs	changes during	time.

Key	Idea:	Using	a	game	theoretic	resource	allocations,	where	applications	
compete	for	the	shared	resources.

Results:

We	show	that	CAGE is	strategy	proof:	

• No application can get more utilization by bidding more or less 
than the true value of the resource



Spec	2006	Cache	Demand

4

Applications’	demand	changes	over	time:



Applications’	phases

5

Consider	hmmer and	mcf applications:

hmmer

2TT

mcf

2TT

27.8% 15.7%

36.84%

Utility-based [1] : 27.8% improvement.

CAGE (ours) 27.8/2+36.84/2> 27.8% 

3$/s

7$/s

10$/s

5$	left 7$	left

16.2% Improvement

[1]	M.	K.	Qureshi	et	al.	"Utility-based	cache	partitioning:	A	low-overhead,	high-
performance,	runtime	mechanism	to	partition	shared	caches."	in	MICRO-39. IEEE,	2006.



Distributed	Resource	Management

6

Two	Case	Studies:	
1)	A	Cache	Congestion	game

2)	Main	Processor	and	Co-processor	Congestion	game.

Problem	Definition:
Given	𝑁 Players (applications)	and	a	set	of	𝑀 resources,	we	want	to	find	an	

allocation	scheme	that	maximizes	the	total	utility	of	all	players.

Game	theoretic	model:	Each	player	𝑖 chooses	a	subset	of	resources	(from	a	given	

family	of	subsets),	each	resource	𝑚 has	a	utility	gain	𝑢& which	depends	on	the	

number	of	players	using	this	resource.

Each	player	wants	to	maximize	its	own	utility.



CAGE	Model



Cache	Congestion	Game

8

Cache	Partitioning:
We have a hierarchical cache where larger chunks are
more congested and smaller chunks are more private.
The applications can decide to run their code on the
congested part with more cache space or less congested
part with less cache capacity.

Utility-based	cache	partitioning:
Shows that LRU-based cache partitioning gives more
cache space to applications that have higher demand and
lower to those who have lower demand. But higher
demand doesn’t mean higher performance (streaming
applications).



Evaluation

9

Cache	Partitioning:
Comparison of CAGE with solo, shared on different mixes
of applications:



Conclusion

10

Observations:	
Centralized	Approaches:	
As	the	number	of	applications	increase,	centralized	approaches	are	not	scalable.
The	central	decision	maker	does	not	know	about	the	applications'	need.
Applications	have	different resource	needs.
Applications’	needs	changes during	time.

Results:

We	show	that	CAGE is	strategy	proof:	
No	application	can	get	more	utilization	by	bidding	more	or	less	than	the	true	

value	of	the	resource



Questions?

11



Hidden	Slides

12



Spec	2006	Cache	Demand

13

IPC	with	respect	to	the	size	of	LLC:



Example	(hmmer,	mcf)



Parallel

• Consider	the	following	bipartite	graph	and	
utility	functions	for	each	resource:



Sequential	Auction:

• Parallel	actions	of	each	agent:	Each	user	bids	
for	the	most	valuable	resource.



Sequential	Auction:

• Parallel	actions	of	each	agent:



Sequential	Auction:

• Parallel	actions	of	each	agent:


