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Why distributed resource
management approach?

Distributed Centralized



Distributed Resource Management

Observations:
Centralized Approaches:
As the number of applications increase, centralized approaches are not

scalable.

The central decision maker does not know about the applications' need.
Applications have different resource needs.

Applications’ needs changes during time.

Key Idea: Using a game theoretic resource allocations, where applications
compete for the shared resources.

Results:

We show that CAGE is strategy proof:

* No application can get more utilization by bidding more or less

than the true value of the resource



Spec 2006 Cache Demand

180

160

140

120

100

80

60

40

20

[ 1256kB L2 cache
- | 64kB L2 cache
Bl 32kB L2 cache

Applications’ demand changes over time:
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Applications’ phases

Consider hmmer and mcf applications:
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Utility-based [1] : 27.8% improvement.

CAGE (ours) 27.8/2+36.84/2> 27.8% ﬂ 16.2% Improvement

[1] M. K. Qureshi et al. "Utility-based cache partitioning: A low-overhead, high-
performance, runtime mechanism to partition shared caches." in MICRO-39. IEEE, 2006.
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Distributed Resource Management

Two Case Studies:

1) A Cache Congestion game

2) Main Processor and Co-processor Congestion game.

Problem Definition:

Given N Players (applications) and a set of M resources, we want to find an
allocation scheme that maximizes the total utility of all players.
Game theoretic model: Each player i chooses a subset of resources (from a given

family of subsets), each resource m has a utility gain u,,, which depends on the
number of players using this resource.

Each player wants to maximize its own utility.



CAGE Model
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Cache Congestion Game

Cache Partitioning:

We have a hierarchical cache where larger chunks are
more congested and smaller chunks are more private.
The applications can decide to run their code on the
congested part with more cache space or less congested
part with less cache capacity.

Utility-based cache partitioning:

Shows that LRU-based cache partitioning gives more
cache space to applications that have higher demand and
lower to those who have lower demand. But higher
demand doesn’t mean higher performance (streaming
applications).




Evaluation

Cache Partitioning:

Comparison of CAGE with solo, shared on different mixes
of applications:
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Conclusion

Observations:

Centralized Approaches:

As the number of applications increase, centralized approaches are not scalable.
The central decision maker does not know about the applications' need.
Applications have different resource needs.

Applications’ needs changes during time.

Results:

We show that CAGE is strategy proof:

No application can get more utilization by bidding more or less than the true

value of the resource
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Questions?
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Hidden Slides



Spec 2006 Cache Demand
IPC with respect to the size of LLC:

3 0805 — | 2.5 2.15 2026 4
25 7;0:0::0— 0:; ] 2 ﬁ 23; :ﬁ 2025 e 3 Lt
1:: 1 079 - 15 - 2 2024 f ,

1 astar %ﬁ ] ! ; oy % dealll 2023 '-l— hmmer

78 - bzip2 19 GemsFDTD | 1
03 o775 }—— |03 185 2022
] —— 1 | 077 0 +——— 18— | 2021 +— ':1 ..... 0 — T
| 5 e H 5 e -4 &
SE32§3 NRGEZEE | "d4H§id3 CEEREE S NEAEIEE | SHOPSLSS
08 L55 0645 015 2082 12
Z 15 - 064 —f- 203 1 7
06 145 | o635 | libquantum 01 424 2,028 | 08 f
0.4 L4 063 / f 2026 - 06 -
s Ibm 135 osiie3d 0625 4—.—.—.—0—1— 0.0 me 2,024 namd 0.4 omnetpp
13 e 062 2022 0.2
o — - I o615 —— | o t+—r—v—v+—++ | 200 o
ANAgEE§3 HARgz83 783832 @ = CER-B-B- E-EE-E

14 1 216 osste T — | 21 12
1.395 4 08 - 214 _ 4 05815 - stream 208 1

139 - sphinx3  f 0.8
1385 06 - 212 05814 - 206 tonto o

138 % 04 21 -l-—'EEEi 05813 - 204 -—1 1 xalancbmk

sjeng I 0.4

113; 02 soplex 2.08 ps5g12 ——— | 202 o3
13s o+ |l — — |osEm2 2l o\
R R RS S E EEEE N EEEEEE REEE N §875283

13




Example (hmmer, mcf)

: 27.8%

Static approaches: 27.8% Improvement CAGE: 36.84/2+27 8/2>27.8



Parallel

* Consider the following bipartite graph and

utility functions for each resource:
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Sequential Auction:

* Parallel actions of each agent: Each user bids
for the most valuable resource.
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Sequential Auction:

* Parallel actions of each agent:
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Sequential Auction:

* Parallel actions of each agent:
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