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Motivation
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• Problem: Given a set of nodes and edges whose failure status is 
unknown, we would like to implement optimal recovery algorithm.

• Observations: 
– Large-scale failures in communication networks due to natural disasters or 

malicious attacks can severely affect critical communications and threaten 
lives of people.

– In real-world scenarios, the failure pattern might be unknown or only 
partially known.

• Key Idea: Use multi-stage stochastic optimization to recourse as more 
information becomes available.

• Results:
– Lower recovery cost (a factor of 3 on average).
– Trade-off between:

• Demand loss
• Execution time
• Repair cost
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The failure pattern is unknown or only partially known

Total Number of repairs in previous approaches and our 
proposed approach
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Problem Definition
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• We formulate the minimum expected recovery (MINER) problem as a 
mixed integer linear programming and show that it is NP-Hard.

• The nodes and edges in the graph belong to:
1. the sets 𝐸𝐵 ∈ 𝐸 and 𝑉𝐵 ∈ 𝑉 are known to be failed,
2. the sets 𝐸𝑈 ∈ 𝐸 and 𝑉𝑈 ∈ 𝑉 are in the gray area whose failure patterns is 

unknown,
3. the sets 𝐸𝑊 ∈ 𝐸 and 𝑉𝑊 ∈ 𝑉 are in the green area which are known to 

be working correctly in the system.



Proposed Algorithms (ISR)
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Key idea:
Initial guess (Failure probability 
distribution) 
Find a feasible solution set (Not 
Optimal)
Select a candidate node to monitor 
repair and get more information
Update the initial belief
Recourse as more information 
becomes available.

Design principles:
Feasible Solution:

1. Iterative shortest path (ISR-SRT)
2. Iterative multicommodity (ISR-MULT)
3. Iterative branch and bound (ISR-BB)
4. Progressive ISP (P-ISP)

Best Candidate node selection: Betweenness centrality



Proposed Algorithms (ISR-SRT)

Key idea:

For each demand pair, finds the shortest paths.

Advantage:

• Simple to implement,

• Polynomial time complexity.

Problem:

• Does not consider potential conflicts among 
demand pairs

• Demand Loss is possible.
9



Proposed Algorithms (ISR-MULT)

Key idea:

LP relaxation of MINER and include all fractional 
variables in the current feasible set.
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Best found feasible 
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Feasible solutions



Proposed Algorithms (ISR-BB)

Key idea:

Solve LP relaxation of MINER.

Branch on a fractional 

variable to get closer 

to optimal.

Advantage:

• Configurable trade-off between time complexity 
and optimality.

Problem:

• High execution time if runs for optimal solution.
11

IP(0) : δ1(0) = 0.8, δ2(0) = 0.5
Z(1)=40

IP(1) : δ1(1) = 1, δ2(1) = 0.7
Z(1)=45

IP(2) : δ1(2) = 0, δ2(2) = 0.45
Z(2)=46

δ1 = 1 δ1 = 0

IP(3) : δ1(4) = 1, δ2(3) = 1
Z(3)=48

IP(4) : δ1(4) = 1, δ2(4) = 0
Z(4)=46

δ2 = 1 δ2 = 0



Proposed Algorithms (P-ISP)
Key idea:
We modify Iterative split and prune algorithm in [1].
• We use an uncertain estimation of failure distribution and change the 

length of the edge 𝑒𝑖𝑗 ∈ 𝐸 at the nth iteration to:

𝑙𝑛 𝑒𝑖𝑗

𝑐𝑖𝑗
=
𝑘𝑖𝑗
𝑒 𝜁𝑖𝑗

𝑒 𝑛 𝜁𝑖𝑗
𝑒 𝑛 +

𝑘𝑖
𝑣 𝜁𝑖

𝑣 𝑛 𝜁𝑖
𝑣 𝑛 + 𝑘𝑗

𝑣 𝜁𝑗
𝑣 𝑛 𝜁𝑗

𝑣 𝑛

2
𝑐𝑖𝑗

Where 𝑘𝑖𝑗
𝑒 𝜁𝑖𝑗

𝑒 𝑛 𝜁𝑖𝑗
𝑒 𝑛 , 𝑘𝑖

𝑣 𝜁𝑖
𝑣 𝑛 𝜁𝑖

𝑣 𝑛 , and 𝑘𝑗
𝑣 𝜁𝑗

𝑣 𝑛 𝜁𝑗
𝑣 𝑛 are 

the expected cost of repair for edge 𝑒𝑖𝑗 and nodes 𝑖 and 𝑗 based on the 
estimated probability distribution at the nth iteration.
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[1] N. Bartolini et al. Network recovery after massive failures. In DSN 2016.
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Evaluation (Methodology)

Network Characteristics used in our evaluation:

• Real network from the Internet topology zoo [2].

• Synthetic Erdos-Renyi graphs with 100 nodes.

Implementation:

• Python, Networkx, Gurobi optimization toolkit

14
[2] The internet topology zoo. http://www.topology-zoo.org/, accessed in May, 2015.



Evaluation (demand loss)

Deltacom topology

• Trade-off between number of repairs and demand loss.
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ISR-SRT has a low execution time while it does not 
consider potential conflict among demand pairs and has
25% demand loss when the number of demand pairs is 6)

25% demand loss



Evaluation (Execution time)

Synthetic Erdos-renyi (non-planar graph)

• Comparison of number of repairs and execution time.
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Solving the optimal NP-Hard problem can take 5 days to 

complete in some cases. Our ISR algorithm has 𝟏𝟎𝟓X
lower execution time and it’s recovery performance is 
close to optimal.

𝟏𝟎𝟓X lower 
execution time



Evaluation (Trade-off)

DeltaCom topology

• Trade-off execution time and number of repairs.
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Using ISR-BB, we can have a configurable trade-off 
between the number of repairs and execution time.

Configurable trade-off 



Potential Implication of our work

Pos and Cons of each proposed approach
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Conclusion
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• Problem: Given a set of nodes and edges whose failure status is 
unknown, we would like to implement optimal recovery algorithm.

• Observations: 
– Large-scale failures in communication networks due to natural disasters or 

malicious attacks can severely affect critical communications and threaten 
lives of people.

– In real-world scenarios, the failure pattern might be unknown or only 
partially known.

• Key Idea: Use multi-stage stochastic optimization to recourse as more 
information becomes available.

• Results:
– Lower recovery cost (a factor of 3 on average).
– Trade-off between:

• Demand loss
• Execution time
• Repair cost



Questions?
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Hidden Slides
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Evaluation (discovery, disruption)

BellCanada topology

• Discovery and disruption variation impact.
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Increasing the number of discovered hops improves the 
restoring performance. As we increase the disruption 
variation, the total number of repairs increases until the 
whole network gets disrupted.



Evaluation (heterogeneous cost, 
sensitivity analysis)

BellCanada topology

• Heterogeneous repair cost and Sensitivity analysis.
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Our recovery approaches perform better when the variance of 
heterogeneity is higher. Underestimating the disruption, lead to 
routing of the critical demands through a part of network, which is 
more likely to be failed and therefore the recovery performance is 
lower.



Evaluation (discovery, disruption)

BellCanada topology

• Discovery and disruption variation impact.
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Increasing the load (demand pair or number of flows) 
leads to higher number of repairs.


