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Motivation

* Problem: Given a set of nodes and edges whose failure status is
unknown, we would like to implement optimal recovery algorithm.

e QObservations:

— Large-scale failures in communication networks due to natural disasters or
malicious attacks can severely affect critical communications and threaten
lives of people.

— In real-world scenarios, the failure pattern might be unknown or only
partially known.

* Key Idea: Use multi-stage stochastic optimization to recourse as more
information becomes available.
* Results:
— Lower recovery cost (a factor of 3 on average).

— Trade-off between:
* Demand loss
* Execution time
* Repair cost




Motivation

The failure pattern is unknown or only partially known
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Total Number of repairé/ in previous approaches and our
proposed approach

Network OPT full-info ISP full-info ISP uncertain-info Progressive
Name ISP
BellCanada 28 34.23 79 45.39
Deltacom 36.94 43.26 112 55.5

KDL 55.2 63.2 165.65 83.55




Problem Definition

 We formulate the minimum expected recovery (MINER) problem as a
mixed integer linear programming and show that it is NP-Hard.
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 The nodes and edges in the graph belong to:

1.
2.

3.

the sets Ex € E and Vz € V are known to be failed,

the sets E; € E and V; € V are in the gray area whose failure patterns is
unknown,

the sets £y, € E and IV, € I/ are in the green area which are known to
be working correctly in the system.



Proposed Algorithms (ISR)
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Design principles:

Feasible Solution:

1. Iterative shortest path (ISR-SRT)

2. Iterative multicommodity (ISR-MULT)

3. Iterative branch and bound (ISR-BB)

4. Progressive ISP (P-ISP)
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Proposed Algorithms (ISR-SRT)

Key idea:
For each demand pair, finds the shortest paths.

Advantage:

* Simple to implement,

* Polynomial time complexity.
Problem:

* Does not consider potential conflicts among
demand pairs

* Demand Loss is possible.




Proposed Algorithms (ISR-MULT)

Key idea:

LP relaxation of MINER and include all fractional
variables in the current feasible set.

Feasible solutions Best found feasible
solution

Solution from LP relaxation (LB)
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Proposed Algorithms (ISR-BB)

Key idea:
Solve LP relaxation of MINER. A
Branch on a fractional ! b120__
IP(1) : 84(1) = 1, 8,(1) = 0.7 IP(2) : 6,(2) =0, 6,(2) = 0.45
variable to get closer — 4 — 221-46
o — 2- 27 ~—_
to optlmal. IP(3):61(4(1))=1, 5,(3)= 1 IP(4):61(4(1))=1, 5,(4)= 0
Z(3)=48 2(4)=46
Advantage:

* Configurable trade-off between time complexity

and optimality.
Problem:

* High execution time if runs for optimal solution.




Proposed Algorithms (P-ISP)

Key idea:
We modify Iterative split and prune algorithm in [1].

* We use an uncertain estimation of failure distribution and change the
length of the edge e;; € E at the nth iteration to:
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Where kf; (¢£:(n)) ¢85 (), kF (62 (0)¢F (), and k' (¢7 () ¢F () are
the expected cost of repair for edge e;; and nodes i and j based on the
estimated probability distribution at the nth iteration.

[1] N. Bartolini et al. Network recovery after massive failures. In DSN 2016.
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Evaluation (Methodology)

Network Characteristics used in our evaluation:
* Real network from the Internet topology zoo [2].
e Synthetic Erdos-Renyi graphs with 100 nodes.

Network Name  # of nodes # of edges Average Node degree
BellCanada 48 64 2.62
Deltacom 113 161 2.85
KDL 754 895 2.37

Implementation:
 Python, Networkx, Gurobi optimization toolkit

[2] The internet topology zoo. http://www.topology-zoo.org/, accessed in May, 2015.



Evaluation (demand loss)

Deltacom topology

* Trade-off between number of repairs and demand loss.
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ISR-SRT has a low execution time while it does not

consider potential conflict among demand pairs and has
25% demand loss when the number of demand pairs is 6)




Evaluation (Execution time)

Svnthetic Erdos-renyi (hon-planar graph)

e Comparison of number of repairs and execution time.
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Solving the optimal NP-Hard problem can take 5 days to
complete in some cases. Our ISR algorithm has 10°X

lower execution time and it’s recovery performance is
close to optimal.




Evaluation (Trade-off)

DeltaCom topology

* Trade-off execution time and number of repairs.
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Using ISR-BB, we can have a configurable trade-off

between the number of repairs and execution time.




Potential Implication of our work

Pos and Cons of each proposed approach

Algorithm Cons

Pros

ISR-
SRT

Demand loss, cannot satisfy all de-
mands

Low complexity, easy to implement.
Can be used to satisfy small critical
demands in short time.

P-ISP

High number of unnecessary repairs
in high demand load

Low time complexity compared to
ISR-BB and ISR-MULT, works better
than ISR-MULT in low demand load

ISR-
BB

High time complexity due to large
space exploration

Low number of repairs, best for small
topologies. Can be configured to re-
duce the execution time with higher
number of repairs

ISR-
MULT

Moderate time complexity, high
number of repairs in smaller traffics
(can be combined with P-ISP to
have advantage of both)

Smaller number of repairs compared
to P-ISP, higher than ISR-BB. Better
restoring performance for large num-
ber of demand flow/pair.
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Conclusion

* Problem: Given a set of nodes and edges whose failure status is
unknown, we would like to implement optimal recovery algorithm.

e QObservations:

— Large-scale failures in communication networks due to natural disasters or
malicious attacks can severely affect critical communications and threaten
lives of people.

— In real-world scenarios, the failure pattern might be unknown or only
partially known.

* Key Idea: Use multi-stage stochastic optimization to recourse as more
information becomes available.
* Results:
— Lower recovery cost (a factor of 3 on average).

— Trade-off between:
* Demand loss
* Execution time
* Repair cost
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Hidden Slides



Evaluation (discovery, disruption)

BellCanada topology

* Discovery and disruption variation impact.
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Increasing the number of discovered hops improves the
restoring performance. As we increase the disruption

variation, the total number of repairs increases until the




Evaluation (heterogeneous cost,
sensitivity analysis)
BellCanada topology

* Heterogeneous repair cost and Sensitivity analysis.
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Our recovery approaches perform better when the variance of
heterogeneity is higher. Underestimating the disruption, lead to

routing of the critical demands through a part of network, which is
more likely to be failed and therefore the recovery performance is
lower.




Evaluation (discovery, disruption)

BellCanada topology

* Discovery and disruption variation impact.
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Increasing the load (demand pair or number of flows)

leads to higher number of repairs.



