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Abstract—Vulnerability due to inter-connectivity of multiple
networks has been observed in many complex networks. Previous
works mainly focused on robust network design and on recovery
strategies after sporadic or massive failures in the case of
complete knowledge of failure location. We focus on cascading
failures involving the power grid and its communication network
with consequent imprecision in damage assessment. We tackle
the problem of mitigating the ongoing cascading failure and
providing a recovery strategy. We propose a failure mitigation
strategy in two steps: 1) Once a cascading failure is detected, we
limit further propagation by re-distributing the generator and
load’s power. 2) We formulate a recovery plan to maximize the
total amount of power delivered to the demand loads during the
recovery intervention. Our approach to cope with insufficient
knowledge of damage locations is based on the use of a new
algorithm to determine consistent failure sets (CFS). We show
that, given knowledge of the system state before the disruption,
the CFS algorithm can find all consistent sets of unknown failures
in polynomial time provided that, each connected component of
the disrupted graph has at least one line whose failure status is
known to the controller.

Index Terms—Interdependent networks; Cascading failures;
Power Grids

I. INTRODUCTION

Needless to say, power grids are one of the most critical
infrastructure in our everyday lives. Large-scale blackouts in
the power grid due to propagating failures, natural disasters
or malicious attacks, can severely affect the operation of other
interconnected critical infrastructures and cause catastrophic
economic and social disruptions.

In September 2003, a large cascading blackout, in Italy, led
to the shortage of 6400 MW of power, which caused a com-
plete system collapse. The cascade began when a tree flashover
caused a 380-kV line to fail between Italy and Switzerland
[1]. The cascade lasted approximately several minutes, a time
sufficient for enabling countermeasures, which could have
mitigated and limited the blackout propagation. The main
cause of most cascading failures including 2003 Italian and
Northeast US-Canada blackout is reported to be inadequate
training, planning and operations studies to respond to the
emergency [1, 2]. This highlights the necessity of a holistic
power control strategy that utilizes real-time monitoring to
detect, predict and prevent possible failures. Furthermore, it is
crucial to have a strategic recovery plan that ensures effective
use of the available resources during the recovery process.

The functionality of the electric power grid and its damage

assessment rely on the operation of a monitoring system.
Such a monitoring system utilizes communication lines to
interact with power grid controllers, to notify them of detected
damage involving overloaded power lines. When a cascading
failure affects the power grid, the monitoring system and
the communication network are also likely to fail, inevitably
compromising the completeness and reliability of damage
detection and assessment.

Previous works addressed the problem of cascading failures
involving the power grid and the communication network.
The majority of these works aimed at characterizing the
residual functionality of the networks subject to failure, on
the basis of network topology, size and location of the initial
damage which caused the cascading phenomenon. Recovery
was mostly considered only in the unrealistic case of complete
knowledge of the damage, and with interventions aimed at
restoring network functionality under the assumption that
failure propagation has ended.
In this paper, we address, for the first time, the study of
mitigating an ongoing cascade of failures in a power grid
and maximizing the provided energy by recovering damaged
network elements while the cascade is still in progress and
knowledge of the network damages is only partial. Uncertainty
of the exact location of the disrupted network components
poses a new challenge that has never been successfully tackled.
We study the impact of cascading failures in power grids and
propose a mitigation strategy in two phases that (1) stops the
cascade when the system is still in transient state, and (2)
provides a recovery schedule that maximizes the total amount
of power delivered to demand loads over all the steps of the
recovery process.
In the following, we summarize the most important contribu-
tions:

• We tackle the problem of mitigating an ongoing cascade
(first phase) by formulating the minimum cost flow as-
signment (Min-CFA) problem as a linear programming
optimization. Min-CFA aims at finding a DC power flow
setting that stops the cascading failure at minimum cost.
We define the total cost, the total weighted amount of
reduced power due to the re-distribution of the power in
the generators and loads without violating the overload
constraint at each line.

• We study the problems related to the interdependency of
the power grid and its communication network and show
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that, in the absence of complete knowledge of failure
locations, classic cascade prevention approaches may not
work as they should.

• We address the recovery phase (second phase) formulat-
ing the problem of maximizing the restored accumulative
flow (Max-R). We show that Max-R is NP-hard and
propose a heuristic recovery strategy which works under
partial knowledge of damage locations by calculating
consistent failure sets to locate failures.

• We performed an experimental evaluation, considering
cascading failures in a power grid and its monitoring
communication network. We use real data from the Italian
high-voltage transmission grid (HVIET) and its commu-
nication network (GARR) [3, 4, 5]. The experiments
show that when 60% of the network is disrupted, our
cascade prevention approach (Min-CFA) finds the optimal
solution with 54.39% of the demand satisfied. While,
without a cascade prevention algorithm, the whole system
fails. Furthermore, our backward recovery approach on
average delivers 20% more power to the loads with
respect to a shadow-pricing approach inspired by the
work in [6].

While our recovery approach is proposed for a case study of a
power grid and a communication network, our approach invites
further work on recovery of other interdependent networks.

The remainder of this paper is organized as follows. Sec-
tion II discusses the background and motivation behind this
work. In section III, we explain the Min-CFA and Max-R
optimization problems and show that Max-R is NP-Hard.
Section IV describes our algorithms. Section V shows our eval-
uation methodology and experimental results and Section VI
concludes the paper with a summary.

II. BACKGROUND AND MOTIVATION

Most of the research on large-scale failure management has
concentrated on the recovery of a single network. Bartolini et
al. [7], Al Sabeh et al. [8], Tootaghaj et al. [9] and Wang et al.
[10] jointly address the progressive recovery of a single data
communication network after a large-scale disruption.
In complex networks however, multiple heterogeneous net-
works may be interconnected and interdependent. Because of
the interdependency between different components, perturba-
tions caused by failures, physical attacks or natural disas-
ters may propagate across the different networks. To study
the interactions in a complex network, graph-based models
are typically used, where nodes are the system components
and edges model the interactions or dependencies between
different components of the same or of different networks.
A cascading failure may propagate across the nodes of the
complex network traversing the dependency edges across a
same network or multiple networks, possibly accelerating and
eventually resulting in a potentially total failure of the system.

Cascading failures in interdependent networks have been
studied in several works [11, 12, 13, 14, 15, 16]. The existing
works on interdependent networks can be broadly classified

into three categories: 1) those which study the interaction
through percolation theory [14, 15, 16, 17], 2) works which
try to identify most vulnerable nodes and design failure
resilient networks [11, 18, 19, 20, 21], 3) and the works
which try to find the root cause of failures [22, 23]. To
the best of our knowledge, the problem of mitigating and
recovering from cascading failures, during the transient regime
of the propagation process, has not been studied extensively.
Percolation/epidemic-based approaches depend on having a
prior knowledge about the probabilistic model of failure
propagation, which is hard to obtain. In addition, real systems
usually have a deterministic failure propagation. For example,
if a power line fails, a certain number of communication
routers will stop working. Finding the root cause of the
propagating failure is shown to be NP-Hard [22], but is the
key to design restoration algorithms. Identifying the most
vulnerable nodes and root cause of failures helps to design
failure-resilient systems but does not provide a mitigation
solution when the failure happens in the system.

Cascading failures in power grids can be due to a permanent
short circuit, e.g. a tree falls on a transmission line etc., or due
to a to a temporary failure, e.g. a temporary short circuit in
a transmission line. When a short circuit happens in one of
the transmission lines, the controller sends a ”trip” signal to
the breakers and the breakers set open. The controller tries to
connect the breaker multiple times before the line fails. In case
of a permanent failure, the breaker stays open circuit. After
a line fails in the system, the power re-distributes according
to Kirchhoffs and Ohms laws. This can cause other lines to
be overloaded and trigger new failures. The cascaded failures
can trigger multiple times and spread over the entire network.
Unlike the approach proposed in [18], that re-distributes the
power flow evenly over all transmission lines, we use the DC
power flow model [24, 25] which is widely used in studies of
cascading failures.

The operation and reliability of today’s power grid is highly
dependent on the operation of the communication network that
provides the necessary information needed by the supervisory
control and data acquisition (SCADA) system to respond to
emergency situations. The required data is measured and gath-
ered at the substations from the intelligent electronic devices
(IEDs), control circuit breakers and phasor measurement units
(PMUs) [26, 27]. While the security of the control system is
itself an important challenge on the reliability of the power
grids (e.g. a compromised controller can send a trip signal
to disrupt the power grid) [28, 29], we focus on the inter-
dependency between the operation of the monitoring system
and the controller to avoid the cascaded failure.

III. PROBLEM DEFINITION

We consider a complex system for which some failures are
detected while the propagation is still in the transient regime.
We propose a mitigation strategy to avoid further cascade
and a recovery plan to maximize the total operability of the
network during K steps of recovery. We define the power grid
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TABLE I: Summary of notations.

Notation Explanation
Gp = (Vp, Ep) undirected graph modeling the power grid. Vp is the

set of nodes and Ep is the set of links
Gc = (Vp, Ec) undirected graph modeling the communication net-

work. Vc is the set of nodes and Ec is the set of
links

Gi ∈ Vp generator node Gi ∈ Vp where the power is inserted
Li ∈ Vp load node Li ∈ Vp where the power is extracted
Ji ∈ Vp junction node Ji ∈ Vp where the power just flows by
EB,t

p ⊆ Ep set of broken edges in the red area
EU,t

p ⊆ Ep set of edges in the grey area whose failure patterns is
unknown

EW,t
p ⊆ Ep set of edges in the green area which are known to be

working correctly
F t
ij power flow in line (ij) at time t
θti voltage angle of node i at time t
xij series reactance of line (ij)
P t
i power generated/consumed at node i at time t
Bt nodal admittance matrix at time t
wGi

weighted cost of increasing the power in generator
Gi

wLi
weighted cost of shedding the power of load Li

Pmax
Gi

maximum power that can be generated in Gi

P demand
Lj

demand load at Lj

Fmax
ij maximum capacity of the line (ij)

ER
k set of restored edges at iteration k

δ(ij),k decision variable to repair (ij) ∈ EB,t
p at the kth

iteration
rij resources needed for repairing (ij)
Rk available resource at iteration k of the recovery

operability to be the accumulative amount of power delivered
to satisfy the demand load over the K recovery steps. Our
approach can be extended to the use of other operability
measures such as the total number of working power lines
etc. Table I shows the notation used in this paper.

The power and communication networks are modeled
as undirected graphs Gp = (Vp, Ep) and Gc = (Vc, Ec)
respectively. Transmission lines are monitored by several
sensors deployed nearby that area. The aggregated data are
then sent to closest communication node and to the control
center. Also the control commands are sent to the closest
communication node. Therefore, each power line is monitored
and controlled through the closest communication node. Each
node i ∈ Vp in the power grid can be 1) a generator Gi,
where the power is inserted, 2) a load Li, where the power
is extracted, or 3) a junction Ji where power flows by. As
transformer and generator failures are extremely unlikely, we
hereby assume that failures only occur in power lines (Ep).
Further, we consider the inter-dependency between the power
grid and the communication network such that failures in the
communication network would lead to lack of information in
the control center. We assume that the communication network
gets power from an emergency source in case of failures in
the power grid and ignore the ping pong failures between the
two networks.The edges in the power grid graph Gp may be
in three different states:

1) the set EB,t
p ⊆ Ep is the set of certain broken edges

Monitor the flows

Solve DC Power 

flow optimization
Grey area detection Recovery Phase

Cascade 

Prevention

Solve DC Power 

flow optimization

Multi-stage recovery

Fig. 1: Recovery Process: 1) Re-distribution of power, 2)
Recovery phase.

(hereby denoted as red edges) at time t 1.
2) the set EU,t

p ⊆ Ep is the set of edges of unknown
working status (denoted as grey edges) at time t,

3) the set EW,t
p ⊆ Ep is the set of certain working edges

(denoted as green edges) at time t.

A. 2-phase Recovery approach: Power grid case study

In this section, we study the mitigation of cascading fail-
ure and related recovery process in a power grid. Figure 1
illustrates the two phases of this process: 1) mitigation of the
cascade using a combination of load shedding and adjustment
of the generated power, and 2) recovery phase.

1) Cascade mitigation (Min-CFA): We model the cascading
failure in a power system using a DC load flow model [24].
The DC power flow model provides a linear relationship be-
tween the active power flowing through the lines and the power
generated/consumed in the nodes, which can be formulated as
follows:

F t
ij =

θti − θtj
xij

, (1)

where, F t
ij is the power flow in line (ij) at time t, xij is

the series reactance of line (ij) and θti and θtj are the voltage
angles of node i and j at time t. The power flow of node i can
be found by summing up the power flows of all its adjacent
power lines:

P t
i =

∑
j

F t
ij (2)

We can re-write the power flow model as a linear system of
equations as follows:

P t = Btθt (3)

where Bt is nodal admittance matrix at time t, btij = − 1
xt
ij

for i 6= j and btii =
∑
k

1
xt
ik

.

Once a transmission line trips, the power is redistributed
according to Equation (3) and if the power exceeds the

1Notice that in order to be able to assess an edge damage, the edge
must be connected to a working communication node in Gc. The working
communication node provides the failure status of the edge to the central
controller and can send power adjustment commands to the connected loads
or generators.
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maximum threshold on another line (ij), the transmission line
(ij) will also disconnect unless we reduce the total load or re-
distribute the generated power.
Theorem 1. The power flow model (Equation 3) is always
solvable for each connected component of the power graph.

Proof. The nodal admittance matrix, B, of a connected graph
with n nodes is always rank(B) = n − 1 because one can
construct a graphic matroid from a given graph where the
nodal admittance matrix is a weighted incident matrix. It is
known that the rank of a weighted incident matrix is equal
to the rank of any basis (tree) in the graph which is n − 1
[30, 31]. To make this equation solvable, one of the equations
is removed and the node associated with that equation is
chosen as a reference angle θ1 = 0. If the graph has c
connected components, the rank of its admittance matrix is
n−c. Therefore, the DC power flow model for each connected
component of the graph has a unique solution.

Once we detect an outage of the transmission line, we
readjust power and load according to the optimization prob-
lem described in the following. The Minimum Cost Flow
Assignment (Min-CFA) optimization problem minimizes the
total cost of reducing the load or generator’s power. Let wGi

be the weighted cost of reducing the power in generator Gi

and wLi be the weighted cost of decreasing the power of load
Li. The Min-CFA problem to avoid the cascaded failures can
be formulated as follows:

minimize
∑

Gi,Lj∈Vp

wGi
(P 0

Gi
− P t

Gi
)− wLj

(P t
Lj
− P 0

Lj
)

subject to 0 6 P t
Gi

6 P 0
Gi
, ∀Gi ∈ V t

p

0 6 P t
Lj

6 P demand
Lj

, ∀Lj ∈ V t
p

− Fmax
ij 6 F t

ij 6 Fmax
ij , ∀(ij) ∈ Et

p∑
Gi,Lj∈Vp

P t
Gi

+ P t
Lj

= 0.

P t
Gi

=
∑
j

F t
ij , ∀Gi ∈ V t

p , (ij) ∈ Et
p

P t
Li

=
∑
j

F t
ij , ∀Li ∈ V t

p , (ij) ∈ Et
p

P t
Gi

= Btθt, ∀Gi ∈ V t
p

P t
Lj

= Btθt, ∀Lj ∈ V t
p

F t
ij =

(θti − θtj)
xij

, ∀(ij) ∈ Et
p

(4)
The first constraint indicates that the power generated at each
generator cannot exceed the initial power at each generator. If
we had full knowledge about the location of failures, we could
have a more relaxed constraint to increase the power at some
of the generators without violating a maximum threshold.
However, under uncertain failure we reduce our solution space
to decrease the possibility of consequent cascades due to
unknown knowledge. The second constraint shows that the

reduced load cannot exceed the demand. The third constraint
shows that the power flowing through each line cannot exceed
the maximum capacity of the line. The fourth constraint is the
power conservation condition, i.e. the total power generated
in the generators should be equal to the total power consumed
in the loads. The fifth and sixth constraints show that the total
power generated/consumed at each node should be equal to the
total power flow through its edges. The last three constraints
reflect the DC power flow model.

2) Recovery Phase (Max-R): In the general cascading fail-
ure model, suppose that recovery of each failed power line
(ij) ∈ EB,t

p leads to the restoration of
∑
P k
Lj
(Repk) power

units in the loads’ demand. Where Repk = {(i, j) ∈ EW,k
p }

is the set of restored and working power lines at iteration
k. Also, suppose that at each iteration k of the recovery Rk

resources are available and repairing (ij) needs rij resources.
The maximum recovery (Max-R) optimization can be modeled
as a mixed integer programming where we maximize the
accumulative delivered power over K steps of the algorithm.
Assuming that at each iteration we have enough resources to
repair at least one disrupted edge, we set K to be the total
number of disrupted edges. Let EW

k be the set of lines which
have been restored or are working up to time step k and let
ER

k be the set of restored edges up to iteration k. The Max-R
recovery problem is formulated as follows:

maximize
K∑

k=1

∑
Lj∈Vp

P k
Lj
(Repk) ,

subject to
k∑

m=1

∑
(ij)∈ER

k

δ(ij),m.rij ≤
k∑

m=1

Rm k = 1, ...,K ,

K∑
k=1

δ(ij),k ≤ 1, ∀(ij) ∈ ER
k k = 1, ...,K ,

δ(ij),k ∈ {0, 1}, ∀(ij) ∈ ER
k k = 1, ...,K ,

(5)
where δ(ij),k is the decision variable to repair (ij) ∈ EB

p at
the kth iteration of the algorithm. The first constraint indicates
that at iteration k of the recovery, Rk resources are available;
if the resources are not used in the k-th iteration of the
recovery, the unused resources can be used in the following
steps. The second constraint shows that each broken line can
only be repaired once. Note that the total delivered power in
the objective function changes with respect to the recovery
schedule. The objective function is the accumulative power
flow measured at the loads in the K steps of execution of the
algorithm. With P k

Lj
(Repk) we denote the power received by

load Lj when the recovery decision δ(ij),k is made up to step
k leading to the restoration of the power lines Repk. One
needs to re-solve the DC power flow optimization problem
to find

∑
P k
Lj
(Repk) since the set of working lines, Repk,

at time step k changes based on the current and previous
decisions of the recovery schedule δ(ij),k. Note that in the
recovery phase, we remove the generator’s power reduction
constraint and the generator and load’s power increases
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gradually until all demand loads are satisfied.

Theorem 2. The problem of Max-R is NP-Hard.

Proof. We prove the NP-hardness of the Max-R problem
showing that it generalizes the Knapsack problem. We recall
that the Knapsack problem considers a set of items I , each
item i ∈ I has a size Si and a value Vi > 0. The problem
is to find a subset I ′ ⊆ I such that S(I ′) ≤ S and V (I ′) is
maximized, where S(I ′) =

∑
i∈I′ Si and V (I ′) =

∑
i∈I′ Vi.

In the following we show how we can build, in polynomial
time, an instance of a single stage (K = 1) of Max-R problem
whose solution corresponds to the solution of the generic
formulation of the Knapsack problem given above.

Since we consider a single stage of the Max-R problem,
we assume R resources are available to repair all disrupted
lines (ij) ∈ EB,t

p . We also assume that we have complete
information about the disrupted lines. Let us consider a set
of generators I , each generator corresponding to an element
i ∈ I of the Knapsack problem, producing a flow equivalent to
the value Vi of the element. Each generator i ∈ I is connected
to a unique common load L with a broken line, whose
repair cost is equivalent to the size Si of the corresponding
Knapsack element. We also assume that the load L has a
demand of at least the summation of all flows (

∑
i∈I Vi).

We set the recovery budget of Max-R equal to S, the size
of the Knapsack. This instance of Max-R can be defined
in polynomial time starting from any instance of Knapsack.
Solving this instance of Max-R, corresponds to finding a list
of links to be recovered with cost limited by S, such that
the flow reaching the common load L is maximized, which
is equivalent to selecting the Knapsack subset I ′ ⊆ I with
maximum value, and bounded size S, which completes the
proof that any instance of the Knapsack problem can be
polynomially reduced to the solution of an instance of Max-R,
which implies the NP-hardness of Max-R.

As Max-R is NP-hard, we consider two polynomial time
heuristics, (Max-R-shadow-pricing) and (Max-R-Backward) in
Section IV.

Remark: Note that the maximum recovery problem is a
combinatorial optimization and the total flow that each line
can add to the final solution of the problem is unknown
in advance and depends on the recovery schedule of other
lines. The marginal flow that each line can add to the current
solution of the problem can be found by solving the Min-CFA
problem introduced in section III-A1 which itself is a linear
programming optimization. We call the marginal utility (flow)
added by recovery of each line the ”shadow price” referring
to the amount of flow assigned to the currently unknowable
value of the flow that can be added to the final solution by
repairing a broken line.
We now consider an example where the underlying commu-
nication network is disrupted and therefore, the controller
fails to make appropriate decision to stop the cascade. We
then propose a consistent failure set (CFS) algorithm in

P2 = 1.5

P3 = -2.0

P1 = 0.5

x12 = 1/3 P21=0.375

(a) All lines working.

P2 = 1.5

P3 = -2.0

P1 = 0.5

x12 = 1/3
P21=1.5

(b) Failure in line (23).

Fig. 2: An example of a 3-bus network where active power
and reactances are in pu.

Section IV-A to cope with lack of knowledge.
An illustrative example: Consider the network given in

Figure 2, using the DC power flow model to calculate the
power flows in the lines, where the reference angle is θ1 = 0,
we have:(

θ02
θ03

)
=

(
5 −2
−2 4

)−1(
1.5
−2

)
=

(
0.125
−0.4375

)
(6)

The power flow through each line is then computed as follows:

F 0
12 =

θ012
x12

= 3× (0− 0.125) = −0.3750, (7)

F 0
13 =

θ013
x13

= 2× (0− (−0.4375)) = 0.875, (8)

F 0
23 =

θ023
x23

= 2× (0.125− (−0.4375)) = 1.125. (9)

If the power line 23 gets disrupted as in Figure 2b, the
power redistributes according to DC power flow model, where
F 1
21 = 1.5 and F 1

13 = 2. Suppose that the maximum power
that each line can tolerate is Fmax

ij = 1.3. Therefore, after
the first line gets disrupted, the whole system collapses and
the demand load cannot be satisfied. However, if we know
the exact location of the failure, the controller may reduce the
generator’s power to satisfy a degraded quality of service. One
trivial solution of Min-CFA to this problem is to reduce the
second generator’s power to P 1

2 = 0.8 and reduce the load to
P 1
3 = −1.3 without violating the maximum power on each

line. However, under the uncertainty of the exact location of
the failure, the controller fails to make appropriate decisions
and the whole network collapses.

IV. METHODOLOGY

In this section, we first describe the consistent failure set ap-
proach to detect the status of grey lines. Then, we describe two
heuristic algorithms to solve Max-R. Inspired by the proposed
approach in [6] that finds a progressive recovery schedule in a
data communication network, we first propose a shadow price-
based approach with polynomial time complexity and then
propose a polynomial time backward approach that solves a
single stage of the problem and traces back until it finds the
recovery schedule for all stages.
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A. Finding a Consistent Failure Set (CFS)

In order to detect the grey area, we use an algorithm, which
starts with the nodes that have the smallest number of grey
edges.
Lemma 1. In the power grid graph Gp, if there exists a node
ni ∈ Vp which has only one grey neighbor link e = (ni, nj) ∈
Et

p, the exact status of the grey edge e can be discovered.

Proof. The exact status of a single grey edge attached to a
node ni can be determined using the power flow equation 2,
i.e. the power generated/consumed at node ni can be found by
summing the power flow of all its adjacent power lines.

Lemma 2. If the grey area does not contain a cycle and there
exists at least one edge in the power grid graph Gp whose
status is known, the exact status of all grey edges can be
found in O(|EU,t

p |).

Proof. If the grey area does not contain any cycles, there exists
at least one node that has only one grey neighbor link e and
therefore, according to lemma 1, the exact status of e can be
found. This procedure can be repeated to find the status of all
grey edges in O(|EU,t

p |).

For the case study of a graph Gp which has one or multiple
cycles in its grey area, we propose a consistent failure set rule
to detect the exact status of unknown transmission lines. We
assume the power generated/consumed in each generator/load
or junction is known before the disruption. The algorithm
starts by finding the status of grey edges, which are not
within a cycle and are the only grey neighboring node of
one of its end points. If all nodes have at least two grey
edges in the graph, i.e. there exists a cycle in the grey
area, and our algorithm picks a node within a cycle with
the minimum number of adjacent grey edges and makes
a decision tree. The algorithm tries to solve the unknown
status of the grey edges by assuming one edge at each
cycle to be working or not working, and solving the rest
of DC power flow to see if the assumption is correct. If
the assumption is not correct, the algorithm chooses another
branch of the decision tree until it finds a consistent failure
set. In cases where there exists multiple consistent failure
sets, the algorithm performs a local inspection of an edge
whose status is different from the possible solutions and
picks the solution, which is consistent with the result of
the local inspection. Algorithm 1 shows different steps of CFS.

Theorem 3. Complexity Analysis: Assuming the grey area
becomes a tree by removing C edges, CFS algorithm runs in
O(2C |EU,t

p |).

Figure 3 shows an example of a network with 6 grey edges
and shows different steps of the CFS algorithm. In the first
step, the status of all edges with a single grey adjacent edge
are designated. In the second step, the decision tree makes
two branches to remove the cycle, and solves the DC flow

TABLE II: Average number of local inspections needed as
the size of the grey area increases in the Italian power grid
network.

Percentage of disrupted
monitors

Average number of grey
edges in the italian power
grid

Average # of grey edges
within a cycle

10 25.25 3.74
20 62.49 7.15
30 92.06 10.04
40 124.16 13.35
50 157.6 16.84
60 193.29 21.52
70 227.59 26.95
80 265.49 32.71
90 303.5 40.06

Algorithm 1: Consistent Failure Set (CFS) algorithm.

Data: A set of grey lines (ij) ∈ EU,t
p whose failure

status is unknown, the graph of the network
Gp = (V t

p , E
t
p), the power generated at each

generator PGi ∀Gi ∈ V t
p , the power consumed at

each load PLi ∀Li ∈ V t
p

Result: The status of edges in the grey area (ij) ∈ EU,t
p ,

which can be failure or working.
1: C = Number of edges in EU,t

p that need to
be removed to make the grey area
cycle-free

2: if C > 0 then
3: pick an edge at each cycle to generate a cycle-free

grey area
4: for all 2C combination of the chosen edges at each

cycle, run CFS-Cycle-Free(EU,t
p , Gp, PGi

, PLi
) to find

a consistent failure set
5: else if C = 0 then
6: run CFS-Cycle-Free(EU,t

p , Gp, PGi , PLi ).
7: end if
8: return EB,t

p , EW,t
p

optimization for each branch to find a consistent failure set.
Assuming edge (23) ∈ EB,t

p was broken, we do not find a
consistent feasible solution and therefore we assume (23) ∈
EW,t

p is working. The last graph shows a consistent failure set
of broken and working edges.

In cases where we have multiple consistent failure sets, we
perform a local inspection of the edges whose failure status is
different from the possible consistent solutions, and pick the
solution consistent with the local inspection.
Table II shows the average number of grey edges within a
cycle, in the Italian power grid network [3, 4, 5] when the size
of the disrupted communication network (garr) increases from
10% to 90% for 100 different random selection of disrupted
communication nodes. Assuming all possible failures within a
cycle are consistent with known information, we only need a
maximum of 10% local inspection of the grey edges.
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Fig. 3: An example of a 6-bus network with 6 grey edges and different steps of CFS algorithm.

Algorithm 2: CFS-Cycle-Free

1 Function CFS-Cycle-Free (EU,t
p , Gp, PGi

, PLi
)

2 greys = argmin|(nij) ∈ EU,t
p |;

3 while greys = 1 do
4 Select a node i ∈ V t

p with one grey neighbor
greys = argmin|(ij) ∈ EU,t

p | ;
5 detect whether (ij) ∈ EU,t

p is working or not
using equation 2.;

6 if there exists no solution from equation 2 then
7 return inconsistent;
8 break ;

9 if (ij) ∈ EU,t
p is working then

10 EW,t
p = EW,t

p ∪ (ij) and EU,t
p = EU,t

p \ (ij) ;
11 else
12 EB,t

p = EB,t
p ∪ (ij) and EU,t

p = EU,t
p \ (ij);

13 return consistent, EB,t
p , EW,t

p ;

B. Identifiability of voltage phasors

When the network is divided into a known and unknown
part we can re-write the DC power flow equations as follows:(

Bknown

Bunknown

)
×
(
θknown

θunknown

)
=

(
Pknown

Punknown

)
(10)

Therefore, the unknown voltage phasors can be found as
follows:

Bknown ×
(
θknown

θunknown

)
= Pknown (11)

Let N = Null(Bknown) denote the null space of Bknown,
i.e., for any vector n ∈ Null(Bknown), Bknown.n = 0.
Theorem 4. Voltage phasor θi is identifiable, if and only if
∀n ∈ N we have ni = 0.

Therefore, in order to find a set of identifiable voltage
phasors θi ∈ θ, we can first compute the null space of
Bknown and find all indices with zero values in the null space.
The null space of Bknown gives the number of identifiable
voltage angles. If the value of the voltage phasor of θi is not
identifiable, we have to perform a local inspection to find the
value of voltage angles for non-identifiable nodes.

C. Identifying the failures

After identifying all voltage phasors, one can identify the
unknown admittance matrix if the grey area does not contain
any cycles.

Bunknown ×
(
θknown

θunknown

)
= Punknown (12)

Note that the value of the Punknown is determined from
the previous state of the disruption. We assume the powers
at the generators and loads are only controlled through the
central controller unit and therefore since the controller has
not increased or reduced the power P t

unknonw = P t−1
known.

Therefore, we can find the state of the network for all grey
edges, which are not inside a cycle. In case of having a grey
cycle we use the consistent failure set algorithm to remove the
cycles and find a consistent set. If the consistent failure set
algorithm finds multiple solutions, we pick one by performing
a local inspection.

D. Max-R-shadow-pricing

Since the total value of the flow that each repaired line
can add to the solution is not known in advance, we use
a shadow pricing technique, which is used to assign values
to the unknown value of repaired edges in the power grid
graph. At each stage k, the shadow-pricing algorithm, repairs
the transmission lines (ij) ∈ EB,t

p , which add the maximum
to the total delivered power over the required resource, i.e.
argmax(ij)(Fij/rij), until the total available resources for
stage k are used. Algorithm 3 shows different steps of the
Max-R-shadow-pricing algorithm. The algorithm starts with
the disrupted network and computes the value of the flow
added to the current state of the network divided by the total
number of resources it needs, and repairs the power line that
maximizes this value. This procedure repeats until there are
no more resources left to repair additional lines for the current
stage.

E. Max-R-Backward

As an alternative to compute a more accurate solution of
the Max-R problem, we use Max-R-Backward. The algorithm
starts by solving a single stage of the problem assuming R =
R1 + ... + RK resources are available. The solution of this

7



Algorithm 3: Max-R-shadow-pricing recovery algorithm.

Data: A set of failed lines (ij) ∈ EB,t
p , A set of demand

loads Lj ∈ Vp and generators Gi ∈ Vp, limit on
the tolerable power of each transmission line
Fmax
ij , the nodal admittance matrix B, the

required resources to repair each line rij
Result: The recovery schedule of the failed transmission

lines δ(ij),k
1: R = 0
2: for k ∈ {1, ...,K} do
3: R = R+Rk

4: while ∃(ij) ∈ EB,t
p that rij 6 R do

5: Select an un-repaired line (ij)∗ = argmaxij
F(ij)

r(ij)
6: δ(ij),k = 1
7: R = R− r(ij)∗
8: end while
9: end for

10: return δ(ij)∗,k

(a) HVIET. (b) GARR.

Fig. 4: a) The Italian high-voltage (380 kV) transmission grid
(HVIET), and b) its communication network (GARR).

single stage algorithm is added to the set RepK , showing the
set of edges, which should be repaired up to stage k. Then,
the single stage is solved assuming R = R1 + ... + RK−1
resources are available, which gives the solution set RepK−1.
The repaired lines, which are in the solution set of RepK
and not in RepK−1 will be added to the repair schedule of
stage K. This procedure repeats until the repair schedule of
all stages is found.

V. EVALUATION

In this section, we compare our Min-CFA cascade pre-
vention approach presented in section III, with a baseline
algorithm, which does not include cascade prevention. We
also compare the recovery performance of Max-R-shadow-
pricing and Max-R-backward recovery approaches. We use
the Italian power grid network shown in Figure 4a consisting
of 310 nodes, 113 generators and 97 demand loads. The
network has 361 power. For the communication network we
use the GARR network, shown in Figure 4b consisting of
39 nodes and 50 edges [4, 5]. We implement our cascade
prevention and recovery algorithms in python and used the

Algorithm 4: Max-R-Backward recovery algorithm.

Data: A set of failed lines (ij) ∈ EB,t
p , A set of demand

loads Lj ∈ Vp and generators Gi ∈ Vp, limit on
the tolerable power of each transmission line
Fmax
ij , the nodal admittance matrix B, the

required resources to repair each line rij
Result: The recovery schedule of the failed transmission

lines δ(ij),k
1: solve DC power flow model to find Fij , assuming all

lines are working
2: RepK = EB,t

p

3: for k = K − 1 downto k = 1 do
4: R =

k∑
m=1

Rm

5: Repk = Repk+1

6: while
∑

(ij)∈Repk+1

rij > R do

7: Select a line with minimum flow per cost
(ij)∗ = argminij

F(ij)

r(ij)
8: δ(ij),k+1 = 1
9: Repk = Repk \ (ij)∗

10: end while
11: solve DC power flow model to find Fij , assuming

(ij) ∈ Repk are working.
12: end for
13: return δ(ij)∗,k

Gurobi optimization toolkit, on a 120-core, 2.5 GHz, 4TB
RAM cluster [32].

In the following experiments, we compare the total cost
of failure and delivered power in cases where 1) there is
no cascade prevention, 2) the cascade prevention can only
turn a load on/off and 3) where we can reduce the load’s
demand continuously. For each scenario, we randomize the
results running 10 different trials, where we vary the random
selection of failed transmission lines.

A. Preventing the cascade (Min-CFA)

In the first set of simulations, we compare the performance
of the Min-CFA cascade prevention algorithm with respect to
the total cost and total delivered demand power. Similar to
[24], we assume all loads have the same priority and give a
high penalty for not being able to satisfy the demand. We
assume the weighted cost of decreasing power of load Lj

is 100, i.e. wLj
= 100 ∀Lj ∈ L, while the normalized

weighted cost of generators is 1, i.e. wGi
= 1 ∀Gi ∈ G.

In the first set of simulations we disrupt 60% of the
transmission lines and run Min-CFA to find the optimal
flow assignment. The Min-CFA algorithm finds the optimal
solution with 54.39% of the demand satisfied. On the other
hand, if we do not run a cascade prevention algorithm, the
failed transmission lines lead to more lines failing and this
process continues until the whole system fails. Figure 5a shows
the total delivered power during different time steps of the
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Fig. 6: a) Total delivered power (pu), and b) total cost versus
the percentage of disruption in the Italian power grid.

algorithms with Min-CFA cascade prevention and without it.
As shown Min-CFA can save 45% of total power that could
be delivered if the network was not disrupted.

In the next set of simulations, we use a continuous cascade
prevention, meaning that P t

Lj
in equation 4 can be decreased

continuously. Then, we consider a discrete cascade prevention
scenario, where each load’s demand power should be satisfied
or turned off; and finally, we consider a scenario, where there
is no monitoring technique to reschedule the power flow or
avoid the cascade and the failed transmission lines can trigger
multiple cascade. Figures 6b and 6a show the simulation
results for the 3 cases versus the percentage of disrupted net-
work. As shown, the continuous cascade prevention approach
saves more power compared to the discrete power optimization
and when there is no information from the monitoring network
no power can be delivered when 60% of the power lines are
disrupted.

B. Sensitivity Analysis

In this section, we investigate the impact of incomplete
knowledge about the exact location of failures. We consider a
destroyed graph and make x% of the network uncontrollable
(where we lose monitoring information). We then run the
detection algorithm to remove the grey cycle-free edges.
Next, we assume that the total grey area within the cycle is

working (controller’s belief about the grey area within the
cycle which might not be correct), and then we run Min-
CFA algorithm (to adjust the powers). Figure 5b shows the
simulation results of this experiments. It is shown that when
20% of the network get disrupted, the total delivered power can
drop by 44.20% when all the monitors get disrupted. Assuming
the maximum unitary profit of 26.6 e/MW according to
[33], the total profit loss, due to uncertainty can be as high as
209076 e = 10.48pu × 750MW/pu × 26.6 e/MW which
could be avoided using a detection algorithm and a cascade
prevention approach.

C. Recovery phase (Max-R)

In the next set of experiments, we compare the recovery per-
formance of the proposed heuristics (Max-R-shadow-pricing
and Max-R-Backward). Figure 5c shows the total delivered
power flow over different steps of the algorithm when using
the two algorithms. As shown, the shadow-pricing algorithm
does not consider the correlation between different steps of
the recovery approach and tries to maximize the added flow at
each iteration step. On the other hand, the backward algorithm
solves the problem using all repair resources in the beginning
and removes the repair edges with less profit (Fij/r(ij)) from
the schedule of previous stage until all repair schedules are
determined. Therefore, Max-R-Backward performs better than
the Max-R-shadow-pricing approach with larger total area
behind the curve in Figure 5c.

VI. CONCLUSION

This paper studies the combined impact of large-scale
failures on a power grid and its monitoring network. We
propose a 2-phase mitigation strategy that 1) avoids further
cascade while the system is in the transient state and 2) provide
a maximum power flow recovery approach. We show that the
maximum flow recovery problem (Max-R) is NP-Hard and
intractable. Due to high complexity of the recovery problem,
we propose two heuristic approaches (i) a shadow-pricing
heuristic and (ii) a backward algorithm. It is shown that since
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the shadow-pricing heuristic does not consider the combined
impact of repaired component, it performs poorly compared
to the backward algorithm.

We also propose a consistent failure set (CFS) algorithm to
cope with the uncertainty due to the failure of the dependent
communication network that provides the information about
the status of power lines being overloaded. We show that CFS
can find all failure sets given the information from the previous
state of the network before the disruption and the incomplete
information about the status of the lines. Our recovery ap-
proach and detection mechanism with incomplete information
due to failure of the monitoring network is one of the first steps
towards understanding the cascaded failures under uncertainty
and opens up the area of power grid reliability approaches
under incomplete or noisy information.
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