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Abstract—The interdependency of multiple networks makes
today’s infrastructures more vulnerable to failures. Prior works
mainly focused on robust network design and recovery strategies
after failures, given complete knowledge of failure location.
Nevertheless, in real-world scenarios, the location of failures
might be unknown or only partially known. In this work, we
focus on cascading failures involving the power grid and its
communication network with imprecision in failure assessment.
We consider a model where functionality of the power grid and
its failure assessment rely on the operation of a monitoring
system and vice versa. We address ongoing cascading failures
with a twofold approach: 1) Once a cascading failure is detected,
we limit further propagation by re-dispatching generation and
shedding loads, 2) We formulate a recovery plan to maximize
the total amount of load served during the recovery intervention.
We performed extensive simulations on real network topologies
showing the effectiveness of the proposed approach in terms of
number of disrupted power lines and total served load.

Index Terms—Interdependent networks; Cascading failures;
Power Grids

I. INTRODUCTION

TODAY’S critical infrastructures are highly interdepen-
dent. Because of the interdependency between different

components, perturbations caused by failures, physical attacks
or natural disasters may propagate across different networks.
Examples of such coupled critical infrastructures include the
food supply and water systems, financial transactions and
power grids, transportation systems and food supply, etc.
[2, 3]. These critical infrastructures are becoming increasingly
correlated and interdependent. Therefore, modeling and un-
derstanding the interactions between multiple networks and
designing failure resilient infrastructures is crucial for the
reliability and availability of many applications and services.

One of the most critical infrastructures in our everyday
lives is the power grid. Large-scale blackouts in the power
grid due to propagating failures, natural disasters or malicious
attacks can severely affect the operation of other interdepen-
dent critical infrastructures and cause catastrophic economic
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and social disruptions. In September 2003, a large cascading
blackout, in Italy, led to the shortage of 6400 MW of power,
which caused a complete system collapse [4]. A similar event
occurred the same year in the Northeast of the United States,
leading to over 50 million people losing power for several
days. The cascade lasted approximately for four hours, a
time sufficient for enabling countermeasures which could have
mitigated and limited the blackout propagation. This highlights
the necessity of a coherent power control strategy that allows
prompt intervention to mitigate or stop the failure propagation.
Furthermore, it is crucial to have a strategic recovery plan
that ensures effective use of the available resources during the
recovery process.

Despite considerable amount of research in the past few
decades leading to major improvements in the reliability of
communication and power networks, most of the research
focused on the recovery of a single network [5–9]. Unlike
previous work, we jointly address the following three chal-
lenges:

• Providing a realistic model of cascading failures in inter-
dependent networks which takes into account the pecu-
liarity of both the communication network and the power
grid, and overcomes the limitations of the simplified epi-
demic models which cannot represent real infrastructures
[10, 11].

• Modeling lack of knowledge in failure localization, by
considering the potential uncertainty due to failures in
the monitoring systems, which may hamper the use
of appropriate countermeasures to prevent a cascading
failure or recover network services.

• Progressively restoring the network after a large-scale
disruption or a cascading failure in multiple stages, within
the limits of recovery resources (time, cost, human per-
sonnel).

We make the following contributions to address the above
challenges:

• To cope with insufficient knowledge of failure locations,
we propose a new Consistent Failure Set (CFS) algorithm
to determine all failure scenarios, namely the sets of com-
ponents whose failure is consistent with the observations.
CFS is used to determine local monitoring interventions
that allow the identification of the state of all network
components.

• We tackle the problem of mitigating an ongoing cascade
(first phase) by formulating a minimum cost flow assign-
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ment (Min-CFA) as a linear programming optimization
problem. Min-CFA aims at finding a DC power flow
setting that stops the cascading failure with minimum
change in power generation and satisfied demand.

• We formulate a progressive recovery problem (second
phase) to maximize the satisfied demands (Max-R) over
multiple consecutive recovery interventions based on the
available recovery resources at each stage. We show that
Max-R is NP-hard, hence we propose two heuristic recov-
ery strategies: 1) Max-R-Greedy, as a baseline algorithm,
and 2) Max-R-Backward, which consider different time
spans in scheduling the recovery interventions.

• We perform an extensive experimental evaluation, con-
sidering a real network scenario of interdependent power
grid and communication network, under different inter-
dependency models. The experiments highlight the effi-
ciency of our cascade prevention algorithm. For example,
in a scenario where 60% of the lines of the power grid
has failed, the adoption of Min-CFA stops the propagation
with 54% of served load, while without intervention,
the entire system would fail. In the same scenario, our
backward recovery approach Max-R-Backward performs
full recovery, serving on average 20% more accumulative
load than our baseline algorithm Max-R-Greedy.

II. RELATED WORKS

The existing works on cascading failures in interdependent
networks, of interest to our approach, can be broadly classified
into two categories: 1) those, that study the interaction through
percolation theory and stochastic analysis [10–13], 2) studies
that try to identify the most vulnerable nodes [14, 15], and aim
at finding the root cause of failures and identify performance
degradation [16–18].

The approaches of the first category rely on prior knowledge
of the probabilistic model of failure propagation, which is hard
to obtain. In addition, real systems usually have a deterministic
failure propagation. For example, if a power line fails, a certain
number of communication routers will certainly stop working.

Concerning the works of the second category, we underline
that finding the root cause of the propagating failure is key to
the design of failure-resilient systems, but does not provide a
mitigation solution.

Another line of research addresses the problem of cascading
failure in the power grid and studies the peculiarity of the
propagation across power lines. Cascading failures in power
grids can be due to a permanent failure, e.g. a tree falls
on a transmission line etc., or to a temporary failure, e.g. a
temporary short circuit in a transmission line. When a short
circuit happens in a transmission line, a protective overcurrent
relay sends a “trip” signal to the breakers and the breakers set
open. Then the relay attempts to re-close the breaker a few
times. In case of a permanent failure, auto-reclosing fails and
the breaker stays open circuit. After a line fails in the system,
the power re-distributes according to Kirchhoff’s and Ohm’s
laws. This can cause the overload of other lines, trigger new
failures, spreading over the entire network.

Unlike the approach proposed in [19], that re-distributes the
power flow evenly over all transmission lines, we use the DC

power flow model [20, 21]. Notice that this model is widely
used in studies of cascading failures in power grids and is
acknowledged to be a good approximation of the AC power
flow model.

The operation and reliability of today’s power grid is highly
dependent on the operation of the communication network that
provides the necessary information needed by the Supervisory
Control and Data Acquisition\Energy Management System
(SCADA\EMS) and more recently, the Wide-Area Monitor-
ing, Protection, and Control (WAMPAC) system to respond
to emergency situations. The required data is measured and
gathered at the substations from the Intelligent Electronic
Devices (IEDs), fault recorders, breaker status monitors, and
Phasor Measurement Units (PMUs) [22, 23]. While substation
automation is increasing the intelligence and autonomy of
local protection units, it is facilitating the trend of centralized
wide-area protection popularly called the Remedial Action
Scheme (RAS) or the Special Protection Scheme (SPS). In the
latter, data is communicated to a centralized location, which
can initiate corrective actions such as generation re-dispatch
or load shedding to remote locations. A nice description can
be found in [24] and [25] and references therein. The security
of such centralized control systems is itself an important chal-
lenge on the reliability of the power grids (e.g. a compromised
RAS can send an anomalous load shedding signal to disrupt
the power grid) [26–29].

Concerning the problem of restoring network functional-
ities, previous work only considers one homogeneous net-
work [5–9]. Our recovery approach takes inspiration from
the works in [6, 8, 9] and aims at restoring the functionality
of multiple interdependent networks in a progressive manner,
depending on resource and incremental knowledge availability.
Our recovery approach represents a step ahead with respect to
these previous contributions in that it deals with heterogeneous
interdependent networks, and includes a run-time feedback
control of the flow during the recovery process. To the best
of our knowledge, the problem of jointly mitigating and
recovering from cascading failures, during the transient regime
of the propagation process, was never studied extensively
before as we do in the present work. We address such a
problem with particular focus on failures in the power grid
and the interdependent communication network.

III. NETWORK MODEL AND BACKGROUND

We model the interdependency between the power grid
and the communication system for which some failures are
detected while the propagation is still in progress. We propose
a mitigation strategy to minimize further cascades and a
recovery plan to entirely restore the power grid functionality,
while maximizing the accumulative amount of delivered power
during multiple stages of progressive recovery. Our approach
can be extended to the use of other measures related to the
operation of the grid such as the total number of working
power lines, etc. Table I shows the notation used in this paper.

A. Notation

The power and communication networks are modeled as
undirected graphs Gp = (Vp, Ep) and Gc = (Vc, Ec), respec-
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Fig. 1: Interdependency model between a power grid and a
communication network.

TABLE I: Summary of notations.

Notation Explanation
Gp = (Vp, Ep) undirected graph modeling the power grid. Vp is the

set of nodes and Ep is the set of links
Gc = (Vc, Ec) undirected graph modeling the communication net-

work. Vc is the set of nodes and Ec is the set of
links

G ⊂ Vp set of generator nodes Gi where power is generated
L ⊂ Vp set of load nodes Li where the power is consumed
J ⊂ Vp set of junction nodes Ji where the power just flows
EB,t

p ⊆ Ep set of broken (red) edges
EU,t

p ⊆ Ep set of unknown status (grey) edges
EW,t

p ⊆ Ep set of working (green) edges
F t
ij power flow in line (ij) at time t
θti voltage angle of node i at time t
xij series reactance of line (ij)
P t
i power generated/consumed at node i at time t
Y t nodal admittance matrix at time t
wGi

cost of increasing the power in generator Gi

wLi
cost of shedding the power of load Li

Pmax
Gi

maximum power that can be generated in Gi

P demand
Lj

demand load at Lj

Fmax
ij maximum capacity of the line (ij)

ER
k set of restored edges at stage k

δ(ij),k decision to repair (ij) ∈ EB,t
p at the kth stage

rij resources needed for repairing (ij)
Rk available resource at stage k of the recovery
αi a constant factor showing the reduction of the new

power distribution in node i, where 0 ≤ αi ≤ 1.

tively. Each node i in the power grid is monitored by several
sensors deployed nearby. The monitoring data is then sent
to the node of the communication network which hosts the
control functionalities related to node i of the power grid. In
addition, control commands are sent to the dependent commu-
nication node for generator re-dispatch or load shedding. We
acknowledge that several other emergency actions could be
taken (e.g. system separation, dynamic braking, fast valving,
etc.), which are not considered here.
The set of nodes Vp of the power grid is composed by three
disjoint sets of generators G where the power is generated,
loads L where the power is consumed, and junctions J where
power flows by, with Vp = G ∪ J ∪ L.

As node failures are less likely [30], we hereby assume that
initial failures only occur in power lines (Ep). A node in the
power grid is considered failed if it is not able to deliver the
required power to the loads. Further, we consider the inter-

dependency between the power grid and the communication
network such that (i) failures in the communication network
lead to lack of information and controllability of power grid in
the control center, and (ii) failures in the power grid can cause
further failures in the communication system due to lack of
power. The edges in the power grid graph Gp can be in three
different states: 1) the set EB,t

p ⊆ Ep is the set of broken
edges (hereby denoted as red edges) at time t 1; 2) the set
EU,t

p ⊆ Ep is the set of edges with unknown status (denoted
as grey edges) at time t; 3) the set EW,t

p ⊆ Ep is the set of
working edges (denoted as green edges) at time t.
B. Interdependency Model

To clarify the interdependency model between the com-
munication network and the power grid, consider the ex-
ample shown in Figure 1. The figure shows the interdepen-
dency model between a communication network with 4 nodes
{c1, .., c4}, and a power grid with 8 nodes {p1, ..., p8}. The red
arrows show the interdependency between the two networks.
For example, c1 controls three power nodes {p1, p2, p3} and
gets power from p3. Now consider a failure in one of the
communication nodes c1. In this case three power grid nodes
{p1, p2, p3} become uncontrollable as the controller cannot
send the power adjustment control commands to them. Next,
consider a failure in a node in the power grid p8. In this
case, the communication node c4 that gets power from p8
loses power and consequently the dependent power grid node
p7 becomes uncontrollable. In this work, we consider three
types of interdependency models between the communication
network and the power grid: the one-way interdependency
model (Fig. 2a); the location-based interdependency model
(Fig. 2b); the random interdependency model (Fig. 2c).

In the one-way interdependency model we assume the
power lines are monitored and controlled by the closest com-
munication node, while if a grid node fails, the communication
nodes get backup power from an external source (e.g., battery).
This is the case for many telecommunication deployments
with battery backup. In the one-way interdependency model,
failures in the power grid will not cascade in the communica-
tion network. However, the disruption in the communication
network is observed as lack of knowledge and uncontrollability
in the power grid.

As in the one-way model, in the location-based interdepen-
dency model, each power line is monitored and controlled by
the closest communication node. Nevertheless, in the location-
based model we assume that each node in the communication
network gets power from the closest node in the power grid.

Both in the one-way and location-based interdependency
models, the communication network and power grid are di-
vided into dependent regions and the failure in one region
does not cascade or affect other nodes in a different region.

In the random interdependency model, we assume each
power line is monitored and controlled by a random com-
munication node and each communication node gets power

1Notice that in order to be able to assess an edge failure, the edge
must be connected to a working communication node in Gc. The working
communication node provides the failure status of the edge to the central
controller and can send power adjustment commands to the connected loads
or generators.
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Fig. 2: Three interdependency model between a power grid and a communication network: a) One-way, 2) Location-based
and 3) Random.

from a random substation in the power grid. In the random
interdependency model, the failure in one node may cascade
and spread over the entire network.

Notice that most prior works on the interdependency be-
tween the power grid and the communication network use a
random interdependency model (see examples in [11, 31–33])
and focus on the ping-pong failures from the power grid to
the communication network and vice versa.

While a random interdependency model is easy to analyze
and simulate on synthetic graphs, it fails to capture most real
network topologies. Nevertheless, we include this model in our
analysis for the sake of completeness in providing comparisons
with previous work and because we consider this as a stress-
test due to its potentiality to produce larger cascades.

By comparing the experiments conducted on the random
interdependency model with the ones using location-based and
one-way interdependency models, in Section VI-A we will
show that the extent of the cascading failure phenomenon
is mostly related to the lack of controllability consequent to
failures in the communication network.

C. DC Power Flow Model

We model the cascading failure in a power system using a
DC load flow model [20]. Let F t

ij be the power flow in line
(ij) at time t, xtij be the series reactance of line (ij) and θti
and θtj be the voltage angles of node i and j, at time t2. The
DC power flow model provides a linear relationship between
the active power flowing through the lines and the power
generated/consumed in the nodes, which can be formulated
as follows.

F t
ij =

θti − θtj
xtij

, (1)

The power flow of node i can be found by summing up the
power flows of all its adjacent power lines:

P t
i =

∑
j

F t
ij (2)

We can re-write the power flow model as a linear system of
equations as follows:

P t = Y tθt, (3)

2Notice that the reactance xtij of line (i, j) varies with t as a consequence
of failures or recovery events.

where Y t is nodal admittance matrix at time t, ytij = − 1
xt
ij

for

i 6= j, and ytii =
∑
k

1
xt
ik

[34]. Once events like over-current

are detected in a transmission line (ij), a protective relay trips
a circuit breaker (xij = ∞) and the power is redistributed
according to the DC model. In particular, if the current flow
exceeds the maximum threshold on another line (i′j′), in a
cascading manner, the transmission line (i′j′) may also trip.

Notice that in order to determine the power flowing through
each line after one or more failures, we need to solve the
system of equations 1, which requires the solution of Equation
3 to obtain the values of the vector θt, for each connected
component of the power grid graph.

Remark 1. [35] The system of equations (3) has a feasible
solution for each connected component of the power graph.

Discussion on remark 1. Let us consider a unique connected
component. The nodal admittance matrix Y of a connected
graph with n nodes has always rank (n − 1) because one
can construct a graphic matroid where the nodal admittance
matrix is a weighted incident matrix. It is known that the
rank of a weighted incident matrix is equal to the rank of any
basis (tree) in the graph, which is (n− 1) [35, 36]. To make
this equation solvable, one of the equations is removed and
the corresponding node can be chosen as a reference node.
Without loss of generality, the removal of the first equation
implies θ0 = 0 and the other n− 1 values of the vector θ can
be calculated inverting the system of equations 3 reduced after
the removal of the first equation, according to the technique
in [37, 38]. The reduced admittance matrix has full rank and
thus invertible. If instead the power grid graph has c connected
components due to the disruption of several lines, then the
admittance matrix will have rank n − c and each component
must be addressed by means of the same technique. Let Y ′t

be the admittance matrix of a connected component, and θ′
t

its phasor vector, let also P ′
t be its power vector, at time t.

Then the power flow system of equations of the considered
connected component is P ′t = Y ′

t
θ′

t, which can be solved
independently of the other connected components, in the way
described for the case of a unique connected component, with
the removal of one equation and the introduction of a reference
phasor vector, as described in [37, 38]. Therefore, the DC
power flow model for each connected component of the graph
has a feasible solution.
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IV. CASCADE MITIGATION AND NETWORK RECOVERY

In this section, we address the problem of cascading failure
mitigation and related recovery process in an interdepen-
dent network formed by a power grid and a communication
network. Figure 3 illustrates our two-phase approach. As
described in the figure, whenever a new failure event shows
up, a preliminary monitoring activity is performed to localize
the failure sites. After the failure assessment it follows a first
phase in which further cascades are mitigated or prevented by
means of a combination of load shedding and adjustment of the
generated power. Once the cascade is stopped, a progressive
recovery activity follows, using either a greedy or backward
approach. Recovery is performed in multiple stages according
to resource availability. After the system is recovered, the
monitoring activity restarts, until new failures occur.

1) Cascade mitigation: Once we detect an outage of a
transmission line, we readjust power and load according to
the optimization problem described in the following.

For clarity of presentation, we hereby assume that the power
grid is formed by a unique connected component. Notice
that in the presence of multiple connected component, all the
following techniques are still valid, when applied to each con-
nected component, independently. The Minimum Cost Flow
Assignment (Min-CFA) optimization problem minimizes the
total cost of reducing the load or generator’s power. Let wGi

be the weighted cost of reducing the power in generator Gi

and wLi
be the weighted cost of decreasing the power of load

Li. The Min-CFA problem to prevent the cascading failures
can be formulated as follows:

minimize
∑

Gi∈G,Lj∈L
wGi

(P 0
Gi
− P t

Gi
)− wLj

(P t
Lj
− P 0

Lj
)

subject to 0 6 P t
Gi

6 P 0
Gi
, ∀Gi ∈ G (4a)

0 6 P t
Lj

6 P 0
Lj
, ∀Lj ∈ L (4b)

− Fmax
ij 6 F t

ij 6 Fmax
ij , ∀(ij) ∈ Et

p (4c)∑
Gi∈G

P t
Gi

+
∑
Lj∈L

P t
Lj

= 0 (4d)

P t
Gi

=
∑

j:(Gi,j)∈Et
P

F t
ij , ∀Gi ∈ G (4e)

− P t
Li

=
∑

j:(Li,j)∈Et
P

F t
ij , ∀Li ∈ L (4f)

P t = Y tθt (4g)

F t
ij =

(θti − θtj)
xij

, ∀(ij) ∈ Et
p (4h)

The decision variables in Min-CFA are the continuous values
of power in the generators (P t

Gi
) and loads (P t

Lj
).

Constraint 4a indicates that the power generated at each
generator at time t cannot exceed the initial power observed
at time 0. In case of full knowledge of the location of failures,
we could have a more relaxed constraint to increase the power
at some of the generators without violating a maximum thresh-
old. However, under uncertain failure we reduce our solution
space to decrease the possibility of consequent cascades due
to imperfect knowledge. Constraint 4b shows that the reduced

Monitor the 
flows

Solve DC 
Power flow 

optimization

Grey area 
detection

Recovery 
Phase

Cascade Prevention

Solve DC 
Power flow 

optimization

Multi-stage recovery

Fig. 3: Recovery Process: 1) Cascade mitigation phase, and
2) Recovery phase.

load cannot exceed the demand. Constraint 4c shows that the
power flowing through each line cannot exceed the maximum
capacity of the line (thermal constraint). Constraint 4d is the
power conservation condition, i.e. the total power generated
in the generators should be equal to the total power consumed
in the loads. Constraints 4e and 4f show that the total power
generated/consumed at each node should be equal to the total
power flowing through its edges. Constraints 4g and 4h reflect
the DC power flow model, to be solved according to Remark
1 [38].
We next provide the sufficient condition for each connected

component of the power grid, to ensure that the solution to our
power re-distribution model under uncertain knowledge of the
failure does not increase the power flowing through any line
in the system, making it exceed the thermal threshold given by
constraint 4c. Suppose that in the new power assignment for
each node i, Pi is reduced by a factor αi, i.e. P t

i = αiP
0
i , for

i = 0, . . . , n−1, where 0 ≤ αi ≤ 1. Without loss of generality,
let the reference voltage angle be at node 0 (θ0 = 0). Also,
using the DC power flow model, we can calculate the voltage
angles at each node as follows:

θi =
n−1∑
m=1

kimPm, with kim ≥ 0, (5)

where n is the number of nodes in the power grid, and kim
reflects impedance values, that are always non negative [37,
38].

Let α− , min{αi : i = 1, ..., n− 1} and α+ , max{αi :
i = 1, ..., n−1}. A sufficient condition for not having cascade
propagation is the following.

Theorem 1. Sufficient condition for no additional cascading
failures in Min-CFA problem is as follows:

1− α−

1− α+
≤

∑
m:Gm∈G(kim − kjm)Pm∑

m:Lm∈L(kim − kjm)(−Pm)
∀(ij) ∈ Et

p (6)

Proof of Theorem 1. Without loss of generality, we assume
Fij ≥ 0, otherwise we can simply interchange i and j index. In
order to check whether the new power flow Fij,new provided
by our control approach is not larger than the previous flow
Fij , we need to check if Fij ≥ Fij,new, which is equivalent to
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check if (θi − θj) ≥ (θi,new − θj,new). Note that the new and
previous voltage angles at each node is computed as follows:

θi =
n−1∑
m=1

kimPm, where kim ≥ 0

θi,new =
n−1∑
m=1

kimαmPm, where 0 ≤ αm ≤ 1, kim ≥ 0

Therefore, we have to verify the following inequality:

(

n−1∑
m=1

kimPm −
n−1∑
m=1

kjmPm) ≥ (

n−1∑
m=1

kimαmPm −
n−1∑
m=1

kjmαmPm)

To check if the flow in Fij does not increase after our power
flow adjustment, we need to verify the following inequality,
for each edge (i, j) ∈ Et

p:∑
m:Gm∈G

(kim − kjm)Pm(1− αm) ≥∑
m:Lm∈L

(kim − kjm)Pm(αm − 1) (7)

Now we show that if condition 6 is satisfied for every flow,
we can make sure that the new power flow at each line is no
more than the power flow without any adjustment of generator
or load’s power. We have:∑

m:Gm∈G
(kim − kjm)Pm(1− αm) ≥∑

m:Gm∈G
(kim − kjm)Pm(1− α+) =

(1− α+)
∑

m:Gm∈G
(kim − kjm)Pm ≥

(1− α−)
∑

m:Lm∈L
(kim − kjm)(−Pm) =∑

m:Lm∈L
(kim − kjm)(−Pm)(1− α−) ≥∑

m:Lm∈L
(kim − kjm)(−Pm)(1− αm)

Therefore, if equation 6 holds, the inequality 7 is also verified,
which implies that the new power set at each line does not
exceed the previous value.

2) Recovery Phase: In this paragraph we address the prob-
lem of scheduling recovery interventions in order to maximize
the total accumulative flow absorbed by the loads during K
stages of recovery. The number of stages can be set according
to the assumption that at least one edge can be repaired at each
stage. Therefore K can be set equal to the number of broken
edges. We hereafter refer to the multiple stages of progressive
recovery shortly with the word stages.

Let δ(ij),k be a binary variable representing the decision
to repair edge (i, j) at time k = 1, . . . ,K. Namely, if edge
(i, j) is being repaired at time k, δ(ij),k = 1 and δ(ij),k′ = 0,
∀k′ 6= k. Similarly, if an edge (i, j) had never failed, we set
δ(ij),0 = 1 to keep into account that it must not be scheduled
for repair. For shortness of notation we also define the decision

matrix ∆k, whose ij-th element corresponds to the decision
δ(ij),k.

The recovery of a broken line (ij) requires rij recovery
resources. At each recovery stage, Rk resources are available
for recovery interventions. We assume to have a budget
rollover, so that resources that have not been consumed until
the end of stage k−1 are available at the k-th recovery stage,
and summed up to the Rk newly available.

Notice that in our model, the power grid graph at each
stage k includes all the edges repaired according to the repair
schedule performed until time k. Hence, we denote the power
absorbed by load Lj at time k by P k

Lj
(∆1, . . . ,∆k), calculated

by means of the iterative solution of problem Min-CFA at stage
k.

The maximum recovery (Max-R) optimization problem aims
at maximizing the accumulative delivered power over K
recovery stages. The Max-R recovery problem is formulated
as follows:

maximize
K∑

k=1

∑
Lj∈L

P k
Lj

(∆1, . . . ,∆k)

s.t.
k∑

m=1

∑
(ij)∈Ep

δ(ij),m · rij ≤
k∑

m=1

Rm, k = 1, ...,K

(8a)
k∑

m=0

δ(ij),m ≤ 1, ∀(ij) ∈ Ep, k − 1, . . . ,K (8b)

δ(ij),k ∈ {0, 1}, ∀(ij) ∈ Ep, k = 1, ...,K (8c)

where δ(ij),k is the decision variable to repair (ij) ∈ EB
p at

the k-th stage of the algorithm. Constraint 8a indicates that at
stage k of the recovery schedule, Rk new recovery resources
become available and resources rollover from the previous
stages so that if some available resources are not used until
the k-th stage of the recovery, they are still available in the
following stages. Constraint 8b shows that each broken line
can be repaired only in one stage of the recovery schedule.

Notice that Max-R is a combinatorial and nonlinear op-
timization problem. In fact, the objective function is the
accumulative power flow measured at the loads in the K
steps of execution of the algorithm. We underline that the
total delivered power appearing in the objective function
depends on the recovery decisions adopted at each stage of
the recovery schedule. With P k

Lj
(∆1, . . . ,∆k) we denote the

power absorbed by load Lj when the recovery decisions
given by the decision matrix ∆m are made according to the
schedule up to step m = 1, . . . , k. Such an optimization
problem is combinatorial and non-linear, in that it requires
the solution of the Min-CFA optimization problem to find∑
P k
Lj

(∆1, . . . ,∆k), since the set of working lines at stage
k changes based on the current and previous decisions of the
recovery schedule ∆m, for m = 1, . . . , k.

Note that in the recovery phase, we remove the generator’s
power reduction constraint and the generator and load’s power
increases gradually until all demand loads are all satisfied.

Theorem 2. The problem of Max-R is NP-Hard.

6
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Proof of Theorem 2. We prove the NP-hardness of the Max-R
problem showing that it generalizes the Knapsack problem. We
recall that the Knapsack problem considers a set of items I ,
each item i ∈ I has a size Si and a value Vi > 0. The problem
is to find a subset I ′ ⊆ I such that S(I ′) ≤ S and V (I ′) is
maximized, where S(I ′) =

∑
i∈I′ Si and V (I ′) =

∑
i∈I′ Vi.

In the following we show how we can build, in polynomial
time, an instance of a single stage (K = 1) of Max-R problem
whose solution corresponds to the solution of the generic
formulation of the Knapsack problem given above.

Since we consider a single stage of the Max-R problem,
we assume R resources are available to repair all disrupted
lines (ij) ∈ EB,t

p . We also assume that we have complete
information about the disrupted lines. Let us consider a set of
generators I , each generator corresponding to an element i ∈ I
of the Knapsack problem, producing a flow equivalent to the
value Vi of the element. Each generator i ∈ I is connected to a
unique common load L with a broken line, whose repair cost
is equivalent to the size Si of the corresponding Knapsack
element. We also assume that the load L has a demand of
at least the summation of all flows (

∑
i∈I Vi). We set the

recovery budget of Max-R equal to S, the size of the Knapsack.
This instance of Max-R can be defined in polynomial time
starting from any instance of Knapsack. Solving this instance
of Max-R, corresponds to finding a list of links to be recovered
with cost limited by S, such that the flow reaching the common
load L is maximized, which is equivalent to selecting the
Knapsack subset I ′ ⊆ I with maximum value, and bounded
size S, which completes the proof that any instance of the
Knapsack problem can be polynomially reduced to the solution
of an instance of Max-R, which implies the NP-hardness of
Max-R, showing that Max-R is at least as difficult as the
Knapsack problem.

There exists no polynomial-time solution for general in-
stances of knapsack problem. Therefore, each stage of Max-R
is NP-hard. We also note that the maximum recovery problem
is a combinatorial optimization and the total flow that each
line can add to the final solution of the problem is unknown in
advance and depends on the recovery schedule of other lines in
the previous recovery stages. The marginal flow that each line
can add to the current solution of the problem can be found
by solving the Min-CFA problem introduced in section IV-1
which itself is a linear programming optimization.

As Max-R is NP-hard, and due to the broadness of the
feasible region of the problem, which includes all possible per-
mutations of repair interventions, in the following Section V
we propose polynomial heuristic approaches to stop failure
propagation and recover the network under uncertain failure
localization.

V. HEURISTICS FOR CASCADE MITIGATION AND
RECOVERY UNDER UNCERTAIN KNOWLEDGE

In this section, we first apply a linear algebraic approach to
increase our incomplete knowledge of the phasor voltages as
much as possible, and then we describe the consistent failure
set approach to detect the status of grey lines. The grey lines,
as described in Section III are the set of edges whose working
status is unknown to the controller. Then, we describe two

P2 = 1.5

P3 = -2.0

P1 = 0.5

x12 = 1/3 P21=0.375

(a) All lines working.

P2 = 1.5

P3 = -2.0

P1 = 0.5

x12 = 1/3
P21=1.5

(b) Failure in line (23).

Fig. 4: An example of a 3-bus network where active power
and reactances are in pu.

heuristic algorithms to solve Max-R. Inspired by the approach
proposed in [9] that finds a progressive recovery schedule
in a data communication network, we first propose a greedy
approach with polynomial time complexity and then propose a
polynomial time backward approach that solves a single stage
of the problem and finds the solution for all stages in reverse
recovery scheduling order.

A. Identifiability of voltage phasors
When the network is divided into a known and unknown

part we can re-write the DC power flow equations as follows:(
Yknown

Yunknown

)
×
(
θknown

θunknown

)
=

(
Pknown

Punknown

)
(9)

Therefore, some of the unknown voltage phasors can be found
by solving the following linear set of equations:

Yknown ×
(
θknown

θunknown

)
= Pknown (10)

Let Null(Yknown) denote the null space of Yknown, i.e., for
any vector v ∈ Null(Yknown), we have Yknown · v = 0 [18].

Theorem 3. [39] For an arbitrary matrix Yknown, let
Null(Yknown) represent the null space of Yknown. Voltage
phasor θi is identifiable if and only if ∀v ∈ Null(Yknown) we
have vi = 0.

Therefore, in order to find a set of identifiable voltage
phasors, we can first compute the null space of Yknown and
find all indexes with zero values in the null space. The value
of the identifiable voltage phasors can be found by solving the
linear system of equations (10).

B. Finding a Consistent Failure Set (CFS)
In this section, we first consider an illustrative example

showing the impact of incomplete knowledge on the extent of
the failure propagation and uncontrollability. We then propose
a Consistent Failure Set (CFS) algorithm to cope with lack of
knowledge.

Example. Consider the network given in Figure 4, using the
DC power flow model to calculate the power flows in the lines,
where the reference angle is θ1 = 0, we have:(

θ02
θ03

)
=

(
5 −2
−2 4

)−1(
1.5
−2

)
=

(
0.125
−0.4375

)
(11)

7
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The power flow through each line is then computed as follows:

F 0
12 =

θ012
x12

= 3× (0− 0.125) = −0.3750, (12)

F 0
13 =

θ013
x13

= 2× (0− (−0.4375)) = 0.875, (13)

F 0
23 =

θ023
x23

= 2× (0.125− (−0.4375)) = 1.125. (14)

If the power line 23 gets disrupted as in Figure 4b, the
power redistributes according to DC power flow model, where
F 1
21 = 1.5 and F 1

13 = 2. Suppose that the maximum power
that each line can tolerate is Fmax

ij = 1.3. Therefore, after
the first line gets disrupted, the whole system collapses and
the demand load cannot be satisfied. However, if we know
the exact location of the failure, the RAS/SPS may reduce the
generator’s power to satisfy a degraded quality of service. One
trivial solution of Min-CFA to this problem is to reduce the
second generator’s power to P 1

2 = 0.8 and reduce the load
to P 1

3 = −1.3 without violating the maximum power on each
line. However, under the uncertainty of the exact location of
the failure, the controller fails to make appropriate decisions
and the whole network collapses.

In order to have a correct damage assessment, and solve
the uncertainty in the grey area we propose the following
CFS algorithm. We assume that there is no local load shed-
ding. Hence, the powers at the generators and loads are
only controlled through the central controller unit, so the
power generated/consumed in each generator/load or junction
is known.

To explain our algorithm, we first consider the nodes that
have the smallest number of grey links.

Lemma 1. In the power grid graph Gp, if there exists a node
v ∈ Vp which has only one grey incident link (v, w) ∈ Et

p, the
exact status of the grey link (v, w) is identifiable.

Proof of Lemma 1. The exact status of a single grey link
incident to a node v can be determined using the power flow
Equation 2. In fact, under the assumption of only centralized
load shedding, the power generated/consumed at node v is
known from the previous stage. Hence, the power flowing
through the grey line can be found by solving the power flow
Equation 2 where the only unknown variable is F t

vw.

Lemma 2. If the grey area does not contain a cycle and there
exists at least one edge in the power grid graph Gp whose
status is known, the exact status of all grey edges can be
found in O(|EU,t

p |).

Proof of Lemma 2. If the grey area does not contain any
cycles, it forms a tree. Hence there exists at least one node that
has only one grey incident link whose statuse can be identified
according to lemma 1. This procedure can be repeated to find
the status of all grey links in O(|EU,t

p |).

Therefore, we can find the state of the network for all
grey links, which are not inside a cycle. In the presence
of a grey cycle, the CFS algorithm breaks the cycle by
selecting one arbitrary link within the cycle, and considering
the two potential statuses, broken or working. CFS then finds

one or multiple consistent failure sets, namely sets of status
assignments to each grey link of the cycle, which are consistent
with the available observations.

If the consistent failure set algorithm finds multiple solu-
tions, CFS provides local inspection to determine the actual
failure set.

The CFS algorithm is described in Algorithm 1. In more
details, for the case study of a graph Gp which has one or
multiple cycles in its grey area, CFS starts by considering a
case in which there are no grey link cycles (line 2), finding
the status of grey links by considering them iteratively, starting
from the nodes with only one incident grey link, according to
the function CFS-Cycle-Free, described in Algorithm 2.

If all nodes have at least two grey links in the graph, i.e.
there exists a cycle in the grey area (line 4), CFS picks an
arbitrary edge within a cycle (line 5).

The algorithm tries to solve the unknown status of the grey
edges by assuming one edge at each cycle to be working or not
working according to a decision tree, henceforth generating 2C

possible link status combinations. CFS then uses Algorithm
2 to determine which combination is consistent with the
observation (line 6) and provides the corresponding status of
the remaining links of the cycles.

In cases where there exists multiple consistent failure sets,
CFS requires a local inspection of a link which appears with
a different status in any two solutions to determine which
solution is consistent with the result of the local inspection.

Observation 1. Assuming the grey area becomes a tree by
removing C edges, CFS algorithm runs in O(2C |EU,t

p |).

Proof of Observation 1. We can find out the status of all grey
links which are not within a cycle in O(|EU,t

p |) according to
Lemma 2.

If there are cycles of grey links, we break the cycles by
selecting C links. By making an assumption on the status of
each of these C links CFS builds a decision tree, where at each
node it assumes whether each link is either working or broken.
Such a decision tree will have 2C leaves corresponding to
different failure sets whose consistency is validated separately
by means of Algorithm 1, which will also provide the state of
the remaining grey links in the broken cycles, in the case of
consistency.

Note that the consistent failure set is not unique and
sometimes we may end up having multiple failure sets, which
are all consistent with our partial knowledge.

Example. Figure 5 shows an example of a network with 6
grey links and shows different steps of the CFS algorithm. In
the first step, we evaluate the status of all grey links, which
are the unique grey incident links of a node and therefore are
not part of a cycle.

In the second step, we evaluate the status of grey links form-
ing a cycle. For link (23) we build a decision tree to remove
the existing cycle. The decision tree rooted in the link (23)
will have two branches, corresponding to the two potential
different state of link (23), working or not working. Assuming
edge (23) ∈ EB,t

p was broken, we do not find a consistent
feasible solution, which lead us to evaluate the other branch,

8
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Algorithm 1: Consistent Failure Set (CFS) algorithm.
Data: A set of grey lines (ij) ∈ EU,t

p whose failure status is unknown,
the graph of the network Gp = (V t

p , E
t
p), the power generated

at each generator PGi
∀Gi ∈ V t

p , the power consumed at each
load PLi

∀Li ∈ V t
p

Result: The status of edges in the grey area (ij) ∈ EU,t
p , which can be

failed or working.
1: C = Number of edges in EU,t

p that need to be
removed to make the grey area cycle-free

2: if C = 0 then
3: run CFS-Cycle-Free(EU,t

p , Gp, PGi
, PLi

).
4: else if C > 0 then
5: pick an edge at each cycle to generate a cycle-free grey area
6: for all 2C combination of the chosen edges at each cycle, run

CFS-Cycle-Free(EU,t
p , Gp, PGi

, PLi
) to find a consistent failure set

7: return EB,t
p , EW,t

p

assuming that (23) is working, namely (23) ∈ EW,t
p . The last

graph shows a consistent failure set of broken and working
edges. In this example, we derived only one consistent failure
set. If we had multiple consistent failure sets, we would have
performed a local inspection of the edges whose failure status
is different in the possible consistent solutions, and picked the
solution consistent with the local inspection.

Algorithm 2: CFS-Cycle-Free
1 Function CFS-Cycle-Free (EU,t

p , Gp, PGi
, PLi

)
2 greys = argmin|(nij) ∈ EU,t

p |;
3 while greys = 1 do
4 Select a node i ∈ V t

p with one grey neighbor
greys = argmin|(ij) ∈ EU,t

p | ;
5 detect whether (ij) ∈ EU,t

p is working or not using
equation 2.;

6 if there exists no solution from equation 2 then
7 return INCONSISTENT;
8 break ;

9 if (ij) ∈ EU,t
p is working then

10 EW,t
p = EW,t

p ∪ (ij) and EU,t
p = EU,t

p \ (ij) ;
11 else
12 EB,t

p = EB,t
p ∪ (ij) and EU,t

p = EU,t
p \ (ij);

13 return CONSISTENT, EB,t
p , EW,t

p ;

Remark 2 (Discussion on the number of grey edges.). Table II
shows the average number of grey edges which are part
of a cycle in the graph of the Italian power grid network
[3, 34, 40] when the size of the disrupted communication
network (GARR) increases from 10% to 90% for 100 dif-
ferent random selection of disrupted communication nodes.
Assuming all possible failures within a cycle are consistent
with known information, we only need a maximum of 10%
local inspection of the grey edges.

C. Max-R-Greedy

In this paragraph we introduce the baseline heuristic Max-
R-Greedy to solve the Max-R problem. We recall that the
objective function of the problem Max-R is the total accumu-
lative flow in K stages of recovery. Max-R-Greedy greedily
selects the links to repair based on the marginal value of their
contribution to the accumulative flow.

TABLE II: Average number of local inspections needed as
the size of the grey area increases in the Italian power grid
network.

Percentage of disrupted
monitors

Average number of grey
edges in the Italian power
grid

Average # of grey edges
within a cycle

10 25.25 3.74
20 62.49 7.15
30 92.06 10.04
40 124.16 13.35
50 157.6 16.84
60 193.29 21.52
70 227.59 26.95
80 265.49 32.71
90 303.5 40.06

Algorithm 3: Max-R-Greedy recovery algorithm.
Data: A set of failed lines (ij) ∈ EB,t

p , A set of demand loads
Lj ∈ Vp and generators Gi ∈ Vp, limit on the tolerable power
of each transmission line Fmax

ij , the nodal admittance matrix B,
the required resources to repair each line rij

Result: The recovery schedule of the failed transmission lines δ(ij),k
1: R = 0
2: for k ∈ {1, ...,K} do
3: R = R+Rk

4: while ∃(ij) ∈ EB,t
p that rij 6 R do

5: Select an un-repaired line (ij)∗ = argmaxij
F(ij)

r(ij)
6: δ(ij)∗,k = 1
7: R = R− r(ij)∗
8: return δ(ij)∗,k

At each stage k, Max-R-Greedy repairs the transmis-
sion lines that add the maximum to the total delivered
power over the required resource, i.e. it repairs the line
arg max(ij)∈EB,k

p
(Fij/rij) among the broken ones, until the

total available resources for stage k are used. Algorithm 3
shows different stages of the Max-R-Greedy algorithm.

More in details, the algorithm works iterating repair in-
terventions through stages. At each stage k, it first updates
the current value of the rollover budget (line 3). Then, until
the available budget allows, it selects a new broken link
(i, j)∗ for recovery, based on the marginal contribution to the
accumulative flow, with respect to the repair cost (line 5).
Finally it schedules (i, j)∗ for recovery at stage k (line 6) and
updates the available recovery resources accordingly (line 7).

D. Max-R-Backward

As an alternative heuristic to compute a more accurate
solution of the Max-R problem, we use Max-R-Backward. The
algorithm finds the recovery schedule in K stages as a list
of K sets Sk, k = 1, . . . ,K, of links to be repaired up to
stage k. The algorithms works backward from stage K to
stage 1, by considering a decreasing budget at each stage.
It starts by solving a version of the problem which assumes
R = R1+...+RK resources are available (line 4). The solution
of this execution of the algorithm produces a list of edges to be
recovered from the start until stage K, named SK . Initially, SK
is the entire set of broken links EB

p . In order to calculate the
recovery schedule for each stage, the algorithm proceeds by
selecting from SK all the lines that exceed the budget available
for the first K − 1 stages, and which contribute the minimum
marginal value of flow over cost (line 7) . The selected lines

9
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Fig. 5: An example of a 6-bus network with 6 grey edges and different steps of CFS algorithm.

Algorithm 4: Max-R-Backward recovery algorithm.
Data: A set of failed lines (ij) ∈ EB,t

p , A set of demand loads
Lj ∈ Vp and generators Gi ∈ Vp, limit on the tolerable power
of each transmission line Fmax

ij , the nodal admittance matrix
Y t, the required resources to repair each line rij

Result: The recovery schedule of the failed transmission lines δ(ij),k
1: solve DC power flow model to find Fij , assuming all lines are working
2: SK+1 = EB

p
3: for k = K downto k = 1 do
4: R =

k∑
m=1

Rm

5: Sk = Sk+1

6: while
∑

(ij)∈Sk
rij > R do

7: Select a line with minimum flow per cost
(ij)∗ = argminij

F(ij)

r(ij)
8: δ(ij)∗,k+1 = 1
9: Sk = Sk \ (ij)∗

10: solve DC power flow model to find Fij , assuming (ij) ∈ Sk are
working.

11: return δ(ij)∗,k

will be scheduled for recovery at stage K (line 8), and will
be excluded from the recovery schedule of any previous stage
(line 9). Before the end of each stage, the algorithm must solve
the DC power flow problem taking account of the scheduled
repairs, to update the values of the flows Fij , for all the links
of Ep (line 10).

This procedure repeats until the repair schedule of all stages
is found.

VI. EVALUATION

In this section, we perform an experimental evaluation of
our algorithms in a real network setting. We consider the
Italian power grid network, called HVIET, shown in Figure 6a
consisting of 310 nodes, 113 generators and 97 demand loads.
The network has 361 power lines. For the communication
network we use the GARR network, shown in Figure 6b con-
sisting of 39 nodes and 50 edges [34, 40]. Transmission lines
in the power grid are monitored by several sensors deployed
nearby. Based on the interdependency model, the aggregated
data are then sent to the closest/random communication node
and to the control center. In addition, the control commands
for power adjustment are sent to the closest/random commu-
nication node. Therefore, each node in the communication
network might monitor and control several lines and nodes
in the power grid. In our evaluation, we assume the Italian
power grid network to be purely inductive (lossless) with
zero reactive injection, so that the DC power flow is actually
accurate. We also note that, since the DC power flow model is

an approximation to the AC power flow, applying our model to
a real coupled system, can result in a lower performance. We
implement our cascade prevention and recovery algorithms in
Python and used the Gurobi optimization toolkit [41], on a
120-core, 2.5 GHz, 4TB RAM cluster.

In our experiments we vary the interdependency model
and we randomize the results running 10 different trials with
randomized selection of failed transmission lines.

Summary of observations. The key observations are
as follows. First, we observed that the random interdepen-
dency model has a larger impact on the number of dis-
rupted/uncontrollable nodes in the two networks compared to
a one-way and a location-based interdependency model. This
is due to the fact that in one-way and location-based inter-
dependency model, the cascade is limited to the geographical
interdependent regions in the two network while in a random
interdependency model the cascade spreads from any part of
the network to the other parts.

Second, we observed that our cascade prevention approach
could still provide service, though potentially degraded, dif-
ferently from the case without countermeasures.

Finally, we observed that the backward recovery approach
performs better than the greedy approach. This is due to the
fact that the greedy approach does not consider the correlation
between different steps of the recovery approach and makes a
repair decision at each stage independently.

A. Impact of Interdependency

We first evaluate the impact of different interdependency
models on the extent of failure propagation within the power
grid and the communication network.

We assume the initial failures are in the power grid. In
this experiment we gradually increase the percentage x of
randomly failed lines in the power grid and we observe
how the number of uncontrollable power grid nodes and
disrupted communication node varies accordingly. In the
first scenario, we connect the HVIET and GARR networks
following the location-based interdependency model described
in Section III-B. Figure 7a shows the percentage of uncon-
trollable nodes in the power grid and disrupted nodes in the
communication network which lose power due to the failures
in the power grid, when the propagation stops naturally. We
observe that in a location-based interdependency model the
failure does not spread much and the percentage of failed
power grid nodes and communication nodes is linear with
respect to the initial failures in the power grid.
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(a) HVIET. (b) GARR.

Fig. 6: a) The Italian high-voltage (380 kV) transmission grid
(HVIET), and b) its communication network (GARR).
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Fig. 7: a) Location-based and b) Random interdependency
model in the Italian power grid (HVIET) and its communica-
tion network (GARR).

In the second scenario, we consider the random inter-
dependency model. Figure 7b shows the simulation results
for this scenario. As shown, compared to location-based
interdependency model, in a random interdependency model,
the failures spread more in both the power grid and the
communication network. This is due to the fact that in a
random interdependency model, the failures are not limited
to geographical interdependent regions and can spread from
any part of the network to the other. Hence, we consider this
model as a stress-test for our algorithms.

B. Impact of incomplete knowledge

In this section, we investigate the impact of incomplete
knowledge of the exact location of failures. Initially, x% of the
communication nodes get disrupted. We consider the one-way
interdependency model where the consequences of failures in
the communication network are lack of information and loss of
controllability in the power grid. Figure 8 shows the simulation
results of this experiments. When 100% of the communication
network and 20% of the power grid is disrupted, the total deliv-
ered power can drop by 10.48 power units (pu). Assuming the
maximum unitary profit of 26.6 e/MW according to [42], the
total profit loss, due to uncertainty of failure location can be as
high as 209076 e = 10.48pu × 750MW/pu × 26.6 e/MW
which could be avoided using a detection algorithm and a
cascade prevention approach.

C. Preventing the cascade (Min-CFA)

In this paragraph we evaluate the performance of our
cascade prevention approach, namely the Min-CFA algorithm,
with the case in which no cascade countermeasure is available.
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Fig. 8: Total delivered power (pu) versus the percentage of
failures on the monitoring nodes in the Italian power grid
network.

We consider the one-way interdependency model described
in Section III-B. We assume the communication network gets
power from an external source in case of a failure in the power
grid. The disruption in the communication network is observed
as lack of knowledge and uncontrollability in the power grid.

The performance metric considered in this experiment is the
total delivered demand power.

Similar to [20], we assume all loads have the same priority
and give a high penalty for not being able to satisfy the
demand. We assume the weighted cost of decreasing power
of load Lj is 100, i.e. wLj

= 100, ∀Lj ∈ L, while the
normalized weighted cost of generators is 1, i.e. wGi

=
1, ∀Gi ∈ G.

In the first set of simulations we set the disruption per-
centage of the power grid to x = 60% and run Min-CFA to
find the optimal flow assignment. Figure 9 shows the total
delivered power during different time steps of the algorithms
with Min-CFA cascade prevention and without it. As shown
in the figure, Min-CFA can save 54% of the total power that
would be delivered if the power grid were not disrupted. On the
other hand, if we do not run a cascade prevention algorithm,
the failed transmission lines lead to more lines failing and this
process continues until the whole system fails.

In the next set of simulations, we use a continuous cascade
prevention, meaning that the decision variable, P t

Lj
in Equa-

tion 4 can decrease continuously. Then, we consider a discrete
cascade prevention scenario, where the decision variable, P t

Lj

in Equation 4 can either be equal to each load’s demand power
which should be satisfied or set to zero (i.e., loads are turned
off); and finally, we consider a scenario, where there is no
monitoring technique to reschedule the power flow or avoid the
cascade and the failed transmission lines can trigger multiple
cascade.

In this experiment we gradually increase the percentage x of
randomly failed lines in the power grid and observe the total
amount of load served. Figure 10 shows the simulation results
for the three cases. As shown, the continuous cascade pre-
vention approach saves more power compared to the discrete
power optimization and to the case without cascade prevention.

Notice that in absence of cascade prevention measures, an
initial failure that disrupts more than 60% of the power grid
lines is sufficient to make a black out of the entire system,
due to a full propagation of the failure.
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Fig. 9: Total delivered power (pu) during time when we
use Min-CFA cascade prevention algorithm and without any
cascade prevention in the Italian power grid network.
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Fig. 10: Total delivered power (pu) versus the percentage of
line failures in the Italian power grid.
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Fig. 11: Total delivered power (pu) flow over time for Max-
R-Backward and Max-R-Greedy in the Italian power grid.

D. Recovery phase (Max-R)

In the next set of experiments, we compare the recovery
performance of the proposed heuristics (Max-R-Greedy and
Max-R-Backward). Figure 11 shows the total delivered power
flow over different stages of progressive recovery intervention,
when using the two algorithms. As shown, the greedy approach
does not consider the correlation between different steps of
the recovery approach and tries to maximize the added flow at
each iteration step. On the other hand, the backward algorithm
solves the problem using all repair resources in the beginning
and removes the repair edges with less profit (Fij/r(ij)) from
the schedule of previous stage until all repair schedules are
determined. Therefore, Max-R-Backward performs better than
the Max-R-Greedy approach with larger total area behind the
curve in Figure 11. We next increase the number of resources
at each stage and study the normalized accumulative delivered
power for the two recovery approaches. Table III shows the
results of this scenario.

VII. CONCLUSION AND FUTURE DIRECTIONS

This paper studies the problem of mitigating propagating
failures and performing progressive recovery interventions

TABLE III: Normalized accumulative delivered power for
Max-R-Backward and Max-R-Greedy approaches.

Recovery Resources Max-R-Backward Max-R-Greedy
1 0.8062 0.6791
2 0.9012 0.8377
6 0.9645 0.9435

to restore the functionality of an interdependent power grid
and communication network, under incomplete localization of
failures. We formulate an optimization problem to stop the
cascading failures and, due to high complexity of the recovery
problem, we propose two heuristic approaches (i) a baseline
greedy and (ii) a backward heuristic, to restore the power grid
functionality. By means of extensive simulations, we show that
since the backward algorithm takes account of the combined
impact of repaired component, it significantly outperforms the
baseline recovery algorithm in terms of accumulative delivered
power. Our detection mechanism and recovery approach with
incomplete information opens up the avenues of new research
on improving power grid reliability and resiliency under
incomplete or noisy information. Future research directions
include: (1) more accurate power grid representation (e.g. AC
power flow model), (2) more accurate communication network
models for SCADA (e.g. including power-line carrier) and
WAMPAC, and (3) mitigating the disruptions to electric power
grids caused by malicious attacks.
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