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Abstract—Network recovery after large-scale failures has
tremendous cost implications. While numerous approaches have
been proposed to restore critical services after large-scale failures,
they mostly assume having full knowledge of failure location,
which cannot be achieved in real failure scenarios. Making
restoration decisions under uncertainty is often further compli-
cated in a large-scale failure. This paper addresses progressive
network recovery under the uncertain knowledge of damages. We
formulate the problem as a mixed integer linear programming
(MILP) and show that it is NP-Hard. We propose an iterative
stochastic recovery algorithm (ISR) to recover the network in
a progressive manner to satisfy the critical services. At each
optimization step, we make a decision to repair a part of the
network and gather more information iteratively, until critical
services are completely restored. We propose three different
approaches: 1) an iterative shortest path algorithm (ISR-SRT),
2) an approximate branch and bound (ISR-BB) and 3) an
iterative multi-commodity LP relaxation (ISR-MULT). Further,
we compared our approach with the state-of-the-art Centrality
based Damage Assessment and Recovery (CeDAR) and iterative
split and prune (ISP) algorithms. Our results show that ISR-BB
and ISR-MULT outperform the state-of-the-art ISP and CeDAR
algorithms while we can configure our choice of trade-off between
the execution time, the number of repairs (cost) and the demand
loss. We show that our recovery algorithm, on average, can reduce
the total number of repairs by a factor of about 3 with respect
to ISP, while satisfying all critical demands.

Index Terms—Network Recovery, Massive Disruption, Stochas-
tic Optimization, Uncertainty.

I. INTRODUCTION

LARGE-SCALE failures in communication networks due
to natural disasters can severely affect critical com-

munications and threaten the lives of people in that area.
In 2005, Hurricane Katrina led to an outage of over 2.5
million lines in the BellSouth (now AT&T) network [2]. In
2017, more than 7 million subscribers to cable or wire-line
telecommunication services lost service due to Hurricane Irma
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[3]. In the absence of a proper communication infrastructure,
rescue operation becomes extremely difficult. Progressive and
timely network recovery is, therefore, a key to minimizing
losses and facilitating rescue missions. Many prior works
on failure detection and recovery assume full knowledge of
failures and use a deterministic approach for the recovery
phase, e.g., [4, 5]. In real-world scenarios, however, the failure
pattern might be unknown or only partially known. Therefore,
classic recovery approaches may not work, as they should. To
this end, we focus on network recovery assuming partial and
uncertain knowledge of the failure pattern.

We propose a multi-stage stochastic recovery algorithm,
that uses three optimization techniques to repair a part of the
network at each iteration To clarify the discussion, we consider
different states of network components. Depending on the
available knowledge, we consider the network to be partitioned
into three areas: 1) a green area where all nodes/edges are
known to be working, 2) a red area where the status of
nodes/edges is known to be failed, and 3) a gray area where the
status of nodes/edges is unknown. We improve the knowledge
of the network state by installing monitors on top of the nodes
repaired at each iteration. A monitor is a piece of software,
which can be installed on a working node to discover the
reachable nodes. Monitor nodes provide additional information
about the status of the network, which can be used to revise
and improve the recovery plan. The contributions of this work
are the following:

• We tackle for the first time, the problem of network
recovery after massive disruption under uncertainty of the
exact location of the disrupted nodes/links.

• We formulate the minimum expected recovery (MINER)
problem as a mixed integer linear programming and show
that it is NP-Hard. MINER aims at satisfying the critical
demand flows while minimizing the proposed expected
recovery cost (ERC) function under network capacity
constraints.

• We propose a multi-stage iterative stochastic recovery
(ISR) algorithm, that is presented in three different ver-
sions (depending on the optimization algorithm that is
used), namely, Iterative shortest path (ISR-SRT), Itera-
tive Branch and Bound (ISR-BB), and iterative multi-
commodity LP relaxation (ISR-MULT) to find a feasible
solution and solve the MINER problem.

• In order to provide a fair comparison with our approach,
we modified the state-of-the-art iterative split and prune
(ISP) algorithm [5], presented as progressive ISP to work
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under uncertainty, by allowing a progressive approach and
adding a discovery phase at each iteration. We show that
since ISP does not consider uncertain failures and makes
routing decisions at each iteration step, it may lead to
incorrect routing decisions due to uncertainty which leads
to higher repair cost compared to our algorithms.

• Further, we compare our algorithms with the state-of-the-
art Centrality based Damage Assessment and Recovery
(CeDAR) algorithm [6]. CeDAR works under the incom-
plete knowledge of failure but aims at maximizing the
total satisfied flow during the recovery process, while we
aim at minimizing the recovery cost. Further, CeDAR
does not use a probabilistic knowledge of failures. Our
results show that ISR-BB and ISR-MULT outperform the
state-of-the-art ISP and CeDAR algorithms in terms of
recovery cost.

We observed that since the algorithms in [5] have been
designed for known network failure patterns, poor decisions in
the first iterations of the algorithm propagate through the entire
execution, while our algorithm can correct previous decisions
after each iteration as more information becomes available and
therefore, reduces the recovery cost. Different configurations
of our algorithm can significantly improve the total number
of repairs over other heuristics while performing close to the
optimal in terms of recovery cost.

The remainder of this paper is organized as follows. Sec-
tion II discusses the background and motivation behind this
work. In Section III, we explain the minimum expected re-
covery (MINER) problem and show it is NP-Hard. Section IV
describes our approach to minimize the expected recovery
cost. Section VI shows our evaluation methodology and ex-
perimental results and Section VII concludes the paper with a
summary.

II. BACKGROUND AND MOTIVATION

A. Background

Large-scale network failure detection and recovery have
been studied when full knowledge of the failure pattern is
available in the system [7–12]. To the best of our knowledge,
network recovery has not been extensively studied under
uncertainty.

In the absence of complete knowledge of disrupted network
components, prior works propose network tomography tech-
niques to localize node failures from binary states of end-to-
end paths or infer the performance degradation of links [13–
16]. Our paper differs significantly from the literature work in
the area of network tomography, as it uses progressive mon-
itoring with the purpose of providing information necessary
to perform the recovery activities. The problem of recovery
is not considered in tomography studies which address the
problem of localizing sparse degradation and failures, and are
not suitable for massive failure scenarios.

In a different line of research the problem of network
recovery has been studied in the case of interdependent net-
works [17–21]. Dependent failures in interdependent networks

between a power grid and a communication network have been
studied in [20]. Tootaghaj et al. propose a progressive recovery
approach in an interdependent network consisting of a power
grid and a communication network [17, 18]. They assume a
limited amount of resources available at each iteration step
and propose a progressive recovery heuristic that restores the
power lines while maximizing the total load served during the
recovery intervention.

Wang et al. and Ciavarella et al. studied progressive network
recovery for large-scale failures. They proposed a progressive
recovery approach to maximize the weighted sum of total flow
over the entire steps of recovery [4, 6]. While both Wang et
al. and Ciavarella et al.’s work and our work aim to design
a progressive recovery approach, the objective is different. In
[4] and [6], the objective is maximizing the throughput over
time, whereas we aim to minimize the total cost of repair
under link capacity constraints, which is closer to the work of
Bartolini et al. [5, 22]. In addition, both [4] and [5], assume
that full knowledge of failure is available in the system while
our work and [6] do not make this assumption. We assume the
availability of a probabilistic estimate of the failure scenario,
while [6] assumes lack of knowledge.

The problem of minimizing the recovery cost to satisfy
multiple demand flows under network capacity or quality
of service constraint has been proven to be NP-hard and
several heuristics have been proposed in the literature to reduce
the complexity. Bartolini et al. propose a polynomial-time
heuristic, called ISP, to break the problem into smaller sub-
problems using iterative split and prune [5]. While this ap-
proach performs very close to the optimal when full knowledge
of network failure is available, its performance has not been
investigated under uncertain failure patterns.

We propose a progressive version of ISP in Section V-A and
show that the lack of detailed information regarding the status
of the network components causes a considerable amount of
additional repairs with respect to the ideal case of complete
knowledge. Then, we show that by running our multi-stage
recovery approach, we can reduce the total number of repairs
compared to ISP and avoid unnecessary repairs. Furthermore,
we show that single-stage optimization techniques or iterative
algorithms, which do not update the initial beliefs, do not
perform well for uncertain failures. This is due to the fact that a
small mistake at the beginning of the single-stage optimization
algorithms propagates through the following steps and no
corrective actions can be taken.

We design a novel iterative algorithm to have an approx-
imate solution to the problem of network recovery under
uncertainty of the status of network components. Unlike previ-
ous algorithms, our approach provides an iterative monitoring
activity, which allows more informed decisions and corrective
actions as long as more information becomes available.

B. Motivation

In this section, we show the gap between optimal recovery
and ISP [5] when we do not have perfect information.

Consider a network in which a large-scale failure has
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TABLE I: Number of repaired nodes/edges in optimal and
ISP with full information compared to ISP with gray area and
uncertain-info, and progressive ISP.

Network
Name

# of network
elements
(nodes/edges)

OPT
full-
info

ISP
full-
info

ISP
uncertain-
info

Progressive
ISP

BellCanada 112 28 34.23 79 45.39
Deltacom 274 36.94 43.26 112 55.5
KDL 1649 55.2 63.2 165.65 83.55

occurred. Due to the failures, the state of the entire network
is not visible to the network manager. Instead, the network
manager knows that some nodes and links have failed, some
continue to work, and the fate of others is uncertain (gray),
meaning that their state is only known with some probability.
If we use an algorithm like ISP to determine the required
repairs, it is likely that mistakes will be made due to the
uncertain knowledge. ISP determines all the required repairs in
a one-shot, meaning that once the algorithm is run, all repairs
are determined. Therefore, it does not have an opportunity to
learn the state of the uncertain nodes. We performed a set of
simulations on three different network topologies to illustrate
the gap.

Table I shows the average total number of repairs for the
three algorithms on the three topologies for 10 random runs.
As is shown, ISP with full information performs relatively
close to the optimal in each case, while ISP with uncertain
information requires more than three times the number of
repairs as optimal in some cases.

We then modified ISP, as described in Section V-A, to run in
iterations, where at each iteration a repair is made. Information
about network state is then gathered for any new portions of
the network now visible due to the repair, and the algorithm is
run again with the new information until all demands are met.
We call this algorithm progressive ISP. As can be seen in the
Table, progressive ISP drastically reduces the repairs compared
to ISP with uncertain information. However, the gap between
progressive ISP and OPT full-info is still large which motivates
us to develop our iterative stochastic recovery (ISR) algorithm
that progressively repairs network elements and updates its
knowledge of the state of the network.

III. PROBLEM DEFINITION

We consider the problem of restoring critical services in a
network subject to a large-scale failure, under the uncertain
knowledge of the failure extent. We are interested in gradual
recovery of the network such that the total cost of repaired
nodes/edges during all steps of the recovery is minimized.

A. Network Model

Given an undirected graph G = (V,E) and a set of demand
pairs EH = {(s1, t1), ..., (sk, tk)}, where EH ⊆ V × V and
each demand pair (sh, th) ∈ EH has a source sh, a destination
th and a positive demand flow dh, the goal is to minimize the
expected recovery cost (ERC) to satisfy the demands while
having capacity constraint cij for every edge in the graph.

TABLE II: Summary of notations.

Notation Explanation
G = (V,E) undirected graph modeling the communication net-

work. V is the set of nodes and E is the set of links.
EH set of (source, destination) demand pairs.
EB ⊆ E the set of broken edges in the red area.
VB ⊆ V the set of broken nodes in the red area.
EU ⊆ E the set of edges in the gray area whose failure pattern

is unknown.
VU ⊆ V the set of nodes in the gray area whose failure patterns

is unknown
EW ⊆ E the set of edges in the green area which are known

to be working correctly.
VW ⊆ V the set of nodes in the green area which are known

to be working correctly.
ζvi (n) the failure probability of node vi in the network at

the nth iteration.
ζeij(n) the failure probability of edge eij in the network at

the nth iteration.
keij(ζ

e
ij(n)) the cost of repairing edge eij in the network.

kvi (ζ
v
i (n)) the cost of repairing vertex vi in the network.

cij the capacity of edge (i, j).
fhij(n) the fraction of flow h that will be routed through link

(i, j).
ηmax the maximum degree of the network.
bhi (n) the flow h generated at node i.
δeij the decision to repair link (i, j) ∈ E.
δvi the decision to repair node i ∈ V .

(a) Complete Information. (b) Uncertain Information.

Fig. 1: An example of a failure in a network topology under
(a) complete information and (b) uncertain information.

Table II shows the notation used in this paper.
The nodes and edges in the graph G = (V,E) belong to

three different categories:

1) the sets EB ⊆ E and VB ⊆ V are the set of broken
edges and nodes in the red area which we know for sure
have failed,

2) the sets EU ⊆ E and VU ⊆ V are the sets of edges
and nodes in the gray area whose failure patterns is
unknown,

3) the sets EW ⊆ E and VW ⊆ V are the sets of nodes and
edges in the green area which are known to be working
correctly in the system.

To clarify the discussion, consider the network shown in
Figure 2 where all links have a capacity of one. Suppose that
there exists one source-destination pair (S −D) that has one
unit of demand. Assume there exists a massive failure in the
red area of figure 1a. At the beginning of the recovery process,
we do not have complete knowledge about the failures and the
network is partitioned into a green, red and gray areas as in
figure 1b. Assuming the same recovery cost for all nodes and
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Fig. 2: An example of a failure in a real network topology
from the internet topology zoo [24].

edges in the network, it is obvious that repairing nodes {4, 7}
and edges {S−4, 7−D} is the optimal recovery approach with
a total recovery cost of 4. However, under uncertain knowledge
of failures we might end up repairing nodes {1, 2, 3} and edges
{S − 1, 1− 2, 2− 3, 3−D} with a total recovery cost of 7.

Figure 2, shows a large-scale failure in a real network
topology (DeltaCom) taken from the internet topology zoo
[23]. At the beginning of the recovery process, we do not
have complete knowledge about the failures and the network
is partitioned into a green, red and gray area. It is possible that
the nodes in the middle of the gray area have not failed and
therefore, recovery of a few nodes in the gray area may lead
the whole graph of the network to be connected. Figure 3
shows different steps of our recovery approach. At each
iteration step, based on the current knowledge of the network
state, we repair some of the damaged network elements,
perform a monitoring step and gain more information and
iterate this procedure until all critical services are restored.
At the beginning of the iterative recovery process, we assume
that all the working demand endpoints are endowed with
software monitors which can discover the status of up to K-
hops in the network. Later, as we repair more nodes/edges
in the network, we exploit the repaired nodes as monitors to
discover the gray area and adjust the initial estimate ζ(0) about
the failure probability distribution. Any technology specific
methodology, that can provide incremental information on the
status of the network components, can be integrated in the
monitoring phase of the proposed algorithm.

B. Recovery Problem

To model our optimization problem as a decision-making
process which includes uncertainty, we model the cost of repair
as a function of the failure probability for each node/edge
in the network. Our estimate of the probability of failure in
the location of the considered network elements at the nth

iteration is ζ(n) = {ζeij(n) ∀eij ∈ E, ζvi (n) ∀vi ∈ V },
where ζvi (n) and ζeij(n) are representing our estimate about the
failure probability of node vi and edge eij in the network at the
nth iteration. We use heterogeneous non-uniform cost function
in our evaluation, where kvi and keij is the cost of repairing

Iteration 1 Iteration N

Time

Recovery Monitoring Update 
Information

Fig. 3: Different steps of our progressive recovery approach.

each vertex vi and edge eij in the network. We note that the
cost of repairing each node/edge also depends on its location.
For example, it is more difficult to access and repair a node
on a mountain or an edge that crosses an ocean. Therefore,
our objective function is to minimize the expected recovery
cost (ERC) given the information from the monitoring nodes
to satisfy the given demand. We assume that at each iteration
step we have enough resources to repair one node and its
adjacent edges.

The MINER problem to find a feasible solution set at the
nth iteration can be formulated as follows:

Min
∑

(i,j)∈EU∪EB

keij · ζeij(n)δeij(n) +
∑

i∈VU∪VB

kvi · ζvi (n)δvi (n)

s.t. cij .δeij(n) >
|EH |∑
h=1

fhij(n) + fhji(n), ∀(i, j) ∈ E (1a)

δvi (n) · ηmax >
∑

(i,j)∈EB

δeij(n), ∀i ∈ V (1b)∑
j∈V

fhij(n) =
∑

k∈V
fhki(n) + bhi (n),

∀(i, h) ∈ V × EH (1c)

fhij(n) > 0, ∀(i, j) ∈ E, h ∈ EH (1d)

δvi (n), δ
e
i,j(n) ∈ {0, 1}, ∀(i, j) ∈ E, ∀i ∈ V (1e)

where the binary variables δeij(n) and δvi (n) represent the
decision to use link (i, j) ∈ E and node i ∈ V in the routing
at iteration n, cij is the capacity of edge (i, j), fhij(n) is the
fraction of flow h that will be routed through link (i, j), ηmax

is the maximum degree of the network, and bhi (n) is the flow
h generated at node i which is positive if i is the source of
the flow (bhi (n) = dh) and negative if i is the destination of
the flow (bhi (n) = −dh); keij and kvi are the repair cost of
edge (i, j) and vertex i. The recovery cost is heterogeneous
and depends on the location of the nodes/edges.

Constraint 1a specifies that the fraction of flow that will be
routed through link (i, j) has to be smaller than or equal to the
capacity of that edge; constraint 1b specifies that the degree of
each node is smaller than or equal to the maximum degree of
the network; 1c shows the flow balance constraint, i.e. the total
flow out of a node is equal to the summation of total flow that
comes into a node and the net flow generated/consumed at the
node; 1d states that we consider non-negative assignment of
flows and finally 1e shows the binary variables representing the
decisions to use nodes and edges at iteration n. Our goal here
is to minimize the expected recovery cost. Since our initial
estimate about the failure in the system is not always correct, it
may happen that we try to repair a gray node/edge which is not
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failed, but simply isolated from the working components. This
is unavoidable in some cases. Nevertheless, it is an unwanted
event. For this reason, we distinguish between necessary and
unnecessary recovery interventions. We associate a cost to the
intervention on an unknown but working network element, to
take account of the cost to send personnel to make a local
inspection of the device. In the evaluation, we consider a met-
ric called unnecessary repairs which corresponds to the total
number of nodes/edges in the gray area, ni ∈ VU , ei,j ∈ EU ,
which we decide to use, δeij , δ

v
i = 1, and are found to be

properly functional after a local inspection. On the other hand,
necessary repairs are the total number of nodes/edges in the
gray or red area, ni ∈ {VU ∪ VB}, ei,j ∈ {EU ∪ EB} which
we decide to use, δeij , δ

v
i = 1 and are found to be broken.

Proof of NP-Hardness. The Steiner Forest problem which is
NP-Hard and APX-Hard in general graphs [25–27], is a special
case of our optimization problem. To reduce the Steiner Forest
problem to an instance of our problem, we create one unit of
demand flow for each demand pair in our supply graph. We
assume all source/destination pairs in the supply graph are the
set of node pairs in the Steiner Forest problem for which we
want to find a forest with minimum cost. Furthermore, we
assume there exist no broken/gray nodes in the supply graph
and all edges are broken with expected repair cost of keijζ

e
ij .

We also assume that the capacity of edges is large enough
to accommodate the sum of all demand flows. Since there
exists no broken node, this instance of MINER returns a set
of edges to recover, and since the capacity of links are large
enough to accommodate the sum of all flows, a single path
between any source/destination pair suffices to accommodate
the demand. Therefore, the union of repaired edges generates a
Steiner forest because any cycle implies unnecessary repairs.
Also, since MINER minimized the repair cost, the forest is
the one with minimum cost. Therefore, our problem is also
NP-Hard.

In this work we do not consider cascading failures. In
particular, when defining the status of the network elements,
we assume that any cascading process is terminated and the
failure has reached its full extent. Notice also that ISR assumes
that, after recovery, routing will be performed according to a
centralized scheme, based on the algorithm decisions so that
no overload will be produced on healthy links producing fur-
ther cascading failures. The problem of cascading failures in a
communication network under uncontrolled routing is itself an
interesting problem and can be further studied in future works.
Notice also that such a centralized approach is required during
an emergency and is made possible through the cooperation of
multiple governmental and private entities. In the USA, for in-
stance, the Federal Emergency Management Agency (FEMA)
is in charge, according to the Stafford act, of providing disaster
relief and emergency assistance in the territory of the USA.
The Agency recognizes the communication infrastructure are
critical for the community and includes it in the list of the
infrastructures to be repaired to restore critical communication
services during an emergency, with utmost urgency. Despite
the fact that multiple private businesses may own different

parts of the communication infrastructure, FEMA promotes
a holistic approach to disaster recovery providing financial
and physical assistance. The example of FEMA holds for the
USA, but almost every country that recognizes the relevance of
the communication network as a critical infrastructure adopts
identical policies. For the same reason, in this paper we
assume that all nodes can be exploited as monitors to gain
more information and can ping their neighbors to gather more
information.

C. Estimating the Probability Distribution of Network Failure

In the absence of detailed knowledge of which are the
failed components of the network, we assume the availability
of a probabilistic estimate of the failure scenario. To this
purpose, we assume knowledge of the probability of failure
of each node/link in the gray area, which can be found
using machine learning algorithms [28, 29], reinforcement
learning approaches [30], seismography analysis in case of an
earthquake [31], or understanding the robustness of different
parts of the network. This is typical of other works in this
area. In [28], Bent et al. use historical sampling and machine
learning techniques to learn the distribution online. Tati et
al. tackle the problem of unknown failure distribution from
the perspective of reinforcement learning and propose an
algorithm that learns path availabilities through probing [30].
Guikema et al. use a statistical learning theory approach to
analyze risk and reliability of infrastructure systems [29].

Failures of network elements in the gray area may be
geographically correlated or independent [32]. For example,
if a router in a building has failed, then it is more likely that
other nodes/links in that building are also failed due to building
collapse. We model the intensity of the disruption according
to a geographic failure distribution. For example, in case of
an earthquake with known epicenter coordinates and strength,
we model the geographical distribution of failures according
to a bi-variate Gaussian distribution centered at the epicenter
of the earthquake, and with variance set in proportion to its
strength. Instead, when failures are equally likely to occur
in any network device of an area, we assume that they are
uniformly distributed in a region wide enough to include all the
known failures. To evaluate the performance of our recovery
approach when our estimate of the probability distribution of
failure is not perfect, we performed a sensitivity analysis in
section VI.

IV. ITERATIVE STOCHASTIC RECOVERY ALGORITHMS

In this section, we propose the Iterative Stochastic Recovery
(ISR) algorithm, in its three variants, namely, Iterative shortest
path (ISR-SRT), Iterative branch and bound (ISR-BB), and
iterative multi-commodity (ISR-MULT). The skeleton of these
versions follow the same structure and only differ in terms
of the approximate algorithm they use. We summarize ISR
algorithm in six main steps shown in Figure 4 and Algorithm 1.

Initially, ISR starts by estimating the probability distribution
of the network failure (Step 1). At each iteration, ISR uses
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Start

(1)Build/
Update the
probability
distribution
of failure
ζ(t)

(2)Find a
feasible
solution
set St

St =
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End

{ni ∈

St} =

∅?

Repair
edges

{eij ∈ St}
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candidate
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ni ∈ St
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expected

costs

yes

no

yes
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Fig. 4: Different steps of our iterative stochastic recovery
(ISR).

an approximate algorithm to build a partial solution set of
candidate network components to repair, St = {(i ∈ VU ∪
VB |δi = 1), ((i, j) ∈ EU ∪ EB |δij = 1)} (Step 2). In
our evaluation, we do not consider infeasible problems, i.e.,
there exists at least one feasible solution which can satisfy all
critical services.

We use three different optimization techniques explained
in Section IV-A to build the partial solution set. The partial
solution minimizes the MINER problem based on the current
estimated costs which can change as we gain more knowledge
about the gray area. In step 3, the nodes in the partial solution
set St, are ranked based on the amount of flow in critical
services that they are likely to route, and a node with the
maximum value is selected as a candidate node (Steps 3 and
4). We repair the candidate node, and use it to monitor (Step 5)
the surrounding network and obtain more information about
the status of the network. In step 6, the algorithm updates
the previous estimate of the costs after the discovery. The
procedure is repeated until all the demands are satisfied or
no more repairs are possible although there is a demand loss.

A. An approximate feasible solution

This section describes our three different approaches to find
an approximate feasible solution, step (2) in Figure 4, of the
MINER problem. We use this approximate solution set (St)
to select a candidate node to repair and gain information in
our ISR algorithm. The first alternative is to use an iterative
shortest path algorithm, which has lower time complexity
compared to the other approaches but may not satisfy all the
demands. The second alternative, is to use an iterative branch
and bound, which has high complexity due to large space
exploration but gives a solution very close to the optimal in
terms of repair cost; and finally, we use an iterative multi-
commodity relaxation of the problem to reduce the execution
time but with higher repair cost with respect to the iterative
branch and bound solution.

Algorithm 1: Iterative Stochastic Recovery (ISR)
Data: The supply graph G, demand graph H , EU , VU , EB , VB ,

EW , VW , initial belief about the failure pattern ζ(0)
Result: Set of nodes/edges to be recovered to satisfy the demand

1 DemandSatisfied= False;
2 t= 0;
3 Solution = ∅ ;
4 while DemandSatisfied !=True do
5 Find an approximate solution set of nodes/edges to repair from

the MINER problem that satisfy the demand:
St = {Vs(t) ∈ (VB ∪ VU ), Es(t) ∈ (EB ∪ EU )} using
ISR-SRT, ISR-BB, or ISR-MULT.;

6 if St == ∅ then
7 DemandSatisfied = True;
8 break;
9 else

10 SelectedNode = Select a node with highest flow in the
current solution St ;

11 if |SelectedNode|> 1 then
12 SelectedNode = Select the node with maximum failure

probability ;

13 Repair the SelectedNode, ni and edges attached to it,
enij ∈ St ;

14 Solution = Solution ∪ ni ∪ enij∈St ;
15 Put a monitor on the selected node and run K-hop

discovery phase;
16 t = t+ 1 ;
17 Update our belief ζ(t) from failure probability distribution

from the discovered nodes/edges ;

18 return Solution

1) Iterative Shortest Path (ISR-SRT): This intuitive heuris-
tic first sorts all the demand pairs in decreasing order of
demand flows, and repairs all the shortest paths that are nec-
essary to satisfy each demand separately, without considering
potential conflict among them. To account for the impact of
uncertainty, we use a new notion of path length. For a path at
the nth iteration, the length of each link eij ∈ E is defined as
l(n)(eij) = keij · ζeij(n) + (kvi · ζvi (n) + kvj · ζvj (n))/2, where
keij · ζeij(n), kvi · ζvi (n) and kvj · ζvj (n) are the expected cost of
repair for edge eij and nodes i and j based on the estimated
probability distribution at the nth iteration. Therefore, the
algorithm finds the shortest expected repair cost paths for
each demand pair to repair independently. We run the full
optimization based on the current estimated costs each time,
repair one node and put a monitor on the repaired node, and
then run the optimization with the updated cost again. Since
the algorithm does not consider potential conflicts among
demand pairs, it is possible that only a portion of demand
pairs will be satisfied in the network. The advantage of this
algorithm is its polynomial time complexity since it only needs
to find the shortest cost paths of all demand pairs which makes
it a good candidate for situations, where a small amount of
critical demands needs to be satisfied in short period of time.

2) An Approximate Iterative Branch and Bound (ISR-BB):
As a second option to determine a more accurate estimate
solution of the problem, we use an iterative branch and
bound optimization [33]. The algorithm starts by finding a
solution of the problem by removing the integrality restric-
tions. The resulting linear programming relaxation of MINER
gives a solution for the Multi-Commodity Flow relaxation
of the problem [34]. The multi-commodity relaxation has a
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polynomial time complexity and gives a lower bound (LB)
for the minimization. If the solution satisfies all integrality
restrictions, then we have the optimal solution, otherwise, we
pick a fractional variable, δx, and make two branches by
creating two more constraints in the optimization (δx = 0
and δx = 1). We continue this procedure by making more
branches to get closer to optimal. The smallest branch that
satisfies all integrality constraints is called an incumbent. We
stop branching once the gap between the incumbent’s objective
function and the lower bound in the first iteration on the
objective function is smaller than a threshold (Gap), or we
can stop branching after passing a given time limit. In the
first case, the algorithm gives a solution with an objective
function within (100 ∗ Gap)/LB percentage of the optimal.
In the second case, there is no guarantee on the bound but we
have a guarantee on the execution time of the algorithm. In
the worst-case scenario, we need to put all fractional variables
from the LP-relaxation of MINER in the solution set. At each
iteration, we run the optimization with the current estimation
of the costs, repair one node and run the discovery phase, and
then run the optimization with the updated costs again.

The advantage of this algorithm is its low recovery cost.
Although the execution time is high due to the exploration of
all possible branches, we can trade-off recovery cost to reduce
the execution time.

3) An iterative multicommodity (ISR-MULT): Since the
approximate branch and bound algorithm has high execution
time due to large space exploration of branches, we propose
a new iterative multicommodity solution. In this algorithm,
we do not explore all possible branches, but only select the
branch which is more likely to stay in the final solution (best
candidate node selection). We first start by constructing a
linear programming (LP) relaxation of the MINER problem
which can be solved in polynomial time providing non-integer
solution for 0 ≤ δi ≤ 1 and 0 ≤ δi,j ≤ 1. The LP relaxation
gives a lower bound on the objective function of MINER,
but it can result in many repairs if we repair all fractional
variables. To reduce the number of repairs, we select the
best candidate node from the current non-integer solution
to repair and run the discovery phase and update the cost
functions and failure probability distribution accordingly. We
iterate the algorithm until all the demand pairs are satisfied in
the network. Therefore, the iterative multicommodity solution
works the same as a branch and bound technique except that,
at each iteration of the algorithm we only select one of the
branches and do not explore other possible branches. At each
iteration of the algorithm, we repair the node or the edge which
contributes the maximum flow. In case of ties, we choose the
network element with maximum failure probability.

B. Complexity analysis

In this section, we compare the complexity of the three
proposed approaches.

We note that all versions of ISR repair one node at a time
and therefore in the worst case scenario, the optimization
problem needs O(|V |) iterations. In ISR-SRT, for each

demand pair (O|EH |) we calculate the shortest paths between
the endpoints in O(|E|)×O(|E|×log|V |), using the Dijkstra
algorithm repeatedly on residual graphs until the set of shortest
paths obtained is sufficient to meet the demand requirements.
Notice that at each iteration, the residual graph will have at
least one edge less than the original graph. This iteration, for
calculating a number of shortest paths to satisfy the demand
can therefore be repeated up to O(|E|) times. Hence the
ISR-SRT has a complexity of O(EH) × O(|E|2×log|V |).
Since it is executed in the algorithm of Figure 4 for up
to O(|V |) times, the overall complexity of ISR-SRT is
O(|V ||EH ||E|2×log|V |). Assuming that |E|= O(|V |),
ISR-SRT has complexity O(|EH ||E|3×log|E|).

The bottleneck of the ISR-MULT algorithm is
solving the LP relaxation. The relaxed problem has
O(|E|+|V |+|E||EH |) = O(|V |+|E||EH |) decision
variables, and O(|E|+|V |+|V ||EH |) = O(|E|+|V ||EH |)
constraints. The complexity of solving LP relaxation using
Karmarkar’s interior point method [35] is O(n3.5×L2), where
n is the number of variables and L is the number of bits in
the input. Therefore, under the assumption that |E|= O(|V |),
the LP relaxation takes O(|E|7.5×|EH |7.5) and ISR-MULT
takes O(|E|8.5×|EH |7.5) to run. Assuming ISR-BB runs
B branches to stop (depending on the time budget), the
complexity of the algorithm is O(|B|×|E|8.5×|EH |7.5).

C. Best candidate node selection

The choice of the best candidate node, step (3) in Figure 4,
is performed based on a centrality ranking, where we use a
new notion of centrality which generalizes the classic concept
of betweenness centrality, to consider flow routing. Assuming
the total set of paths in the current solution (St), is P ∗ and
P ∗ni

be the total set of paths in the current solution (St) that
contain ni, then the candidate node, N∗i , is chosen as follows:

N∗i = argmaxni∈St

∑
p∈P∗

ni

f(p)∑
p∈P∗ f(p)

(2)

The numerator is the total amount of flow which can be
satisfied in the current solution set (St) and passes through
ni and the denominator is the total amount of satisfied flow
in the current solution. We also tried a different criterion for
selecting the best candidate node. In particular, we tried to
select the node with maximum failure probability. Extensive
simulation analysis shows that in most scenarios, selecting the
node with maximum centrality gives better results and reduces
the cost of repair. Therefore, we choose centrality as the
main metric and whenever this metric is the same for several
nodes, we choose the node with maximum failure probability,
argmaxni∈St

ζvni
(t), to reduce unnecessary repairs, where

ζvni
(t) represents the estimation of failure probability of node

ni, at time t.

D. Monitoring nodes

This section describes how monitor nodes probe the sur-
rounding network to derive more information on the status
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of the reachable nodes and links. We assume that at the
beginning of the algorithm, a monitor is deployed on each
demand endpoint. Each monitor is able to identify other nodes
that are located within a distance of K-hops, for example by
using traceroutes or other probing methods.

Monitors adopt a breadth-first search algorithm to explore
the network, and truncate the visit at K-hops. Whenever a
monitor determines that a node v is not able to forward the
probe to one of its neighbors w, the monitor marks both the
link (v, w) and the node w as gray as the monitor is not able
to assess whether the failure is located in the node w or in
the link (v, w). Note that a monitor node can only detect its
adjacent link failures.

E. When to iterate the optimization

In order to reduce the complexity of the algorithm, when the
solution of the current iteration of the approximate does not
change after the discovery phase, we propose the Heuristic
trigger for solution update. Assuming S∗ is the total set of
nodes/edges in the gray area and S(t) is the total set of gray
nodes/edges which have to be repaired to satisfy the demands
in the current iteration of the algorithm, it is possible that after
running the discovery phase of our algorithm the next solution
set S(t + 1) remains the same and therefore we do not need
to iterate the optimization.
Heuristic trigger for solution update. Before running the
discovery phase, if the cost function for the current solution
S(t) was X , and it changes to X ′ after K-hops discovery,
and the cost function of the set outside the current solution
S∗ − S(t) was Y and changes to Y ′ after K-hops discovery,
then we only need to re-run the optimization if X − X ′ <
Y −Y ′ because there exists a possibility that there is a better
solution other than the current solution.

V. COMPARISON WITH PRIOR WORKS

In this section, we introduce two prior works, ISP [5] and
CeDAR [6] that aim at recovering the network progressively
after large-scale disruption. Since the state-of-the-art ISP al-
gorithm assumes perfect knowledge of the failed components,
we modify it to work under uncertainty and call it progressive
ISP.

A. Progressive ISP

This section describes progressive ISP which is our ex-
tension of the state-of-the-art iterative split and prune (ISP)
[5]. The basic ISP algorithm starts iteratively by ranking the
nodes based on a new centrality metric, called demand based
centrality, and reducing the demands by either pruning or
splitting the demand on the best candidate node. The demand
pair which is least likely to be routed elsewhere is split over
the repaired node to break the problem into two smaller sub-
problems. The demand can be pruned once we find a working
path that can satisfy a portion of the demand.

While it has been shown that ISP, in terms of recovery
cost, performs very close to optimal compared to other greedy
approaches when full knowledge of the failure is known,
it performs poorly under uncertain failure distributions (see
Table I). Therefore, we adapted the algorithm to accommodate
uncertain failures in a gray area, and iterate at each step to
discover the status of gray nodes/edges by putting monitoring
nodes on the repaired nodes. We use an uncertain estimation
of failure distribution in the first iteration of the algorithm
and change the length of the edge eij ∈ E at the nth

iteration to l(n)(eij)/cij where l(n)(eij) is the expected cost
of eij based on the estimated probability distribution at the
nth iteration defined in Section IV-A1 (ISR-SRT), and cij
is capacity of eij . The edge cost is divided by cij to give
higher cost to the paths which have smaller capacity. Further,
we put monitoring software on the node which is chosen to
split the demand at each iteration to discover the gray area.
However, once the demand splits over a candidate node, a
routing decision is made on the selected node. Therefore, as we
will see in Section VI, even with the help of monitoring nodes,
progressive ISP does not perform well in terms of the total
number of repairs under uncertain failures. In the remainder
of the paper, we use the terms ”progressive ISP” and ”ISP”
interchangeably.

B. CEDAR

Ciavarella et al. [6] propose a polynomial-time heuristic
called Centrality based Damage Assessment and Recovery
(CeDAR) that progressively recovers the network under the
incomplete knowledge of failure. CeDAR aims at maximizing
the total satisfied flow during the recovery process. At each it-
eration step of CeDAR, a limited amount of budget is available
to repair nodes/edges and the repairs are scheduled according
to the availability of the resources at each time step. While
our progressive recovery approach and CeDAR differ in the
objective function, they both propose a progressive recovery
under the incomplete knowledge of failures and therefore, we
compare our result with CeDAR in Section VI in terms of
number of repaired nodes/edges and monitors placed.

At each iteration stage, CeDAR makes a repair decision
based on the available resources and simplifies the problem by
reducing the demand according to the pruning operation. Also,
CeDAR updates the current status of the network by putting
a monitor on the repaired node and progressively updates the
incomplete knowledge of the disrupted area. However, CeDAR
does not make any assumption of the probabilistic failure
distribution of the disrupted area.

VI. EVALUATION

In this section, we compare ISR algorithms, presented in IV,
to the modified version of ISP introduced in Sections V-A. We
use different network topologies including planar and non-
planar real topologies taken from the Internet Topology Zoo
[23, 24]. In particular considering the topologies BellCanada,
Deltacom, and KDL. In addition to these ISP topologies, we
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TABLE III: Network characteristics used in our evaluation.

Network Name # of nodes # of edges Average Node degree
BellCanada 48 64 2.62
Deltacom 113 161 2.85
KDL 754 895 2.37
Minnesota 681 921 2.7

considered a physical layer topology, using the map of the
fiber network of Minnesota made available by Aurora Fiber
Optic Network [36], which results from the collaboration of
more than 50 carriers in the state.

Table III shows the characteristics of the topologies used
for the evaluation. In addition to the real network topologies,
we use synthetic Erdos-Renyi graphs with 100 nodes, where
we varied the probability of having an edge between any two
different nodes, to investigate the behavior of the algorithms
in scenarios of increasing complexity.

In the following experiments, we consider several scenarios,
in which we vary different aspects, such as the number of
demand pairs, the amount of flow demand for each pair,
and the parameters defining the geographical extent of the
disrupted area. For each scenario we randomize the results
running 20 different trials, in which, depending on the sce-
nario, we vary the random selection of source/destination
pairs and the random disruption of network elements. We
implement our recovery algorithms in python and used the
Gurobi optimization toolkit, on a 24-core, 2.6 GHz, 32G RAM
cluster [37].

A. K-hop discovery impact

In this section, we investigate the impact of the depth of the
discovery phase on the performance of the proposed algorithm.
We change the number of discovered hops for the monitoring
nodes from 1 to 5. We use the Minnesota fiber network topol-
ogy with 6 demand pairs and 5 units of flow per demand. The
link capacity is set randomly in the interval [20, 30]. We use
a unitary repair cost for each node and edge. From Figure 5a,
we can see that increasing the number of discovered hops
improves the restoring performance of our algorithms in terms
of total repair cost. We performed similar experiments with
different topologies, which we do not show in this paper, due
to space limitations, and obtained similar results. As Figure 5a
highlights, the number of monitoring hops affects the number
of unnecessary repairs (which we recall are the interventions
performed on actually working, though, unreachable nodes)
significantly, while it has a moderate effect on the number of
necessary repairs. In fact, an inspection performed on a broken
element with unknown status, always results in a necessary
intervention. By contrast, additional knowledge resulting from
a higher setting of the parameter K, helps in reducing the
number of unnecessary interventions.

From this example it is clear that ISP works worse than ISR.
In fact, ISP is not designed to work with uncertain knowledge
of failure locations. Indeed ISP associates repair interventions
with routing decisions, and never reverts a decision made at a
past stage using information made available at later stages. By
contrast, all variants of SRT are able to adjust routing decisions
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Fig. 5: K-hop discovery and disruption variance (K-hop=2),
(Minnesota fiber network topology).
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Fig. 6: a) The impact of heterogeneous repair cost variation
on total cost of repair, b) Over/under-estimation of the dis-
ruption by adding an error between -20 to 25 to the variance
(BellCanada, K-hop=2).

based on the most updated available knowledge, which results
in lower recovery costs with respect to ISP.

B. Percentage of Disruption

In this scenario, addressed in Figure 5b, we change the
amount of disruption in the network to evaluate the perfor-
mance of the algorithms. We use the Minnesota fiber network
topology with 6 demand pairs and 5 units of flow per demand
pair. The link capacity is set randomly in the interval [20, 30].
We used a Gaussian failure distribution and changed the
percentage of disruption from 10 to 50. Figure 5b shows the
simulation results for this scenario.

We observe that the difference from the optimal is higher
for small amount of disruption, and all the algorithms perform
close to each other when the percentage of disruption is higher.
This is due to the fact that, as we increase the percentage
of disruption, the total number of repairs increases until the
whole network get disrupted. Therefore, the uncertainty in the
gray area has less impact on the restoration performance of the
algorithms because the whole gray area is failed. Furthermore,
the number of necessary and unnecessary repairs is the same
for dense disruptions since most of the nodes in the network
are failed and the discovery phase does not help to reduce the
number of unnecessary repairs by a large amount.
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C. Heterogeneous repair cost

In this scenario, we analyze the impact of heterogeneous re-
pair cost. We considered BellCanada topology with 5 demand
pairs and 5 units of flow per demand pair. The link capacity is
set randomly in the interval [20, 50]. We considered a scenario
where the whole network is disrupted and used heterogeneous
repair cost with the average of 20 derived from a uniform
distribution, and changed the variance of cost from 0 to 20.
Figure 6a shows the total and necessary repair cost for this
scenario. As shown, our recovery algorithms perform better in
terms of the total cost of repairs compared to the state-of-the-
art ISP algorithm when the variance of heterogeneity is higher.
This is due to the fact that when the variance of heterogeneity
is higher, the algorithm has a higher solution space to choose
the repair schedule and therefore, the algorithm performs better
compared to a homogeneous repair cost for all nodes/edges.
Therefore, in the next set of experiments, we consider a
homogeneous repair cost.

D. Sensitivity analysis

In our next set of experiments, we study the sensitivity
of the proposed algorithm with respect to the correctness of
the initial failure estimation. We use the BellCanada topology
where the link capacity is set randomly in the interval [20, 50].
The network disruption is randomly generated according to
a Gaussian geographic distribution with a variance of 50
that destroys 50% of network components on average. We
consider a varying error in the estimate of the disruption
extent, and we overestimate/underestimate the disruption by
adding an error between -20 to 25 to the variance of the
disruption. Figure 6b shows the simulation results for this
scenario, where an error of 0 means that the estimate is
generated according to the same distribution that is used to
generate the failures. We observe that when we underestimate
the disruption, the algorithms try to route the critical demands
through a part of the network, which is more likely to be failed.
Overestimating the disruption assumes that more nodes/edges
have been failed than the real disruption. Thus the algorithm
attempts to repair a node/edge which was not really destroyed,
therefore, there is a higher number of unnecessary repairs.
Furthermore, the number of repairs does not change beyond
a specific overestimation, because with higher disruption, we
are assuming that the whole network is disrupted and the
Gaussian distribution does not give much information about
the disruption. ISR-BB performs better than other algorithms
in overestimation or perfect estimation scenarios, but its restor-
ing performance decreases for underestimation scenarios. ISR-
MULT is more robust in underestimation scenarios and in
perfect/overestimation scenarios its performance is close to
ISP.

E. Impact of the accuracy of estimate in the initial probability
distribution

In this set of experiments, we use the DeltaCom topology
with 6 demand pairs and 5 units of flow per demand pair,
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(d) Number of total repairs.

Fig. 7: Impact of imprecision in the accuracy of the proba-
bility of failed nodes and edges, 50% disruption.

where the link capacity is set randomly in the interval [20, 50].
The network disruption is randomly generated according to
a geographic failure, where 68% of network elements reside
inside a circle within which the network elements fail with a
probability of 0.9 and the rest of the network elements fail with
a probability of 0.1. We vary the accuracy of the estimate of
the failure probability from 10% to 90%. For example, if the
accuracy measure on the x-axis is 10, then the assumption on
the failure probability is off by 10%, i.e. we estimate a failure
of 0.8 or 0.2 for the network elements within or outside the
circle, respectively.

Figure 7 shows the number of nodes repaired (Fig 7a); num-
ber of edges repaired (Fig 7b); and monitors placed (Fig 7c)
as we decrease the accuracy of our assumed probability
distribution of failures. It is shown that CeDAR places fewer
monitors and has higher total number of repairs compared
to the different versions of our ISR algorithms. Also, since
CeDAR does not consider failure probabilities, its performance
does not change by changing the inaccuracy percentage of
knowledge. We also observe that all versions of our ISR
algorithms perform worse than CeDAR when the inaccuracy
percentage of knowledge is higher than 70%. Both ISR-MULT
and P-ISP have smaller number of edge repairs when the
inaccuracy percentage of knowledge is small and repair more
edge repairs in higher inaccuracy percentage of knowledge.
Also, even though ISR-BB repairs fewer edges, the total
number of repairs (including nodes and edges) increases as
we increase the inaccuracy percentage of knowledge.

F. Skew factor

In this section, we use the DeltaCom topology with 6
demand pairs and 5 units of flow per demand pair, where
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the link capacity is set randomly in the interval [20, 50].
The network disruption is randomly generated according to
a geographic failure, where 50% of network elements reside
inside a circle within which the network elements fail with
a probability of 0.1 and the rest of the network elements fail
with a probability of 0.9. This allows us to evaluate the impact
of the certainty of the failure on our algorithm. We expect that
the higher the certainty we have of the status of a gray network
element, the better the results.

We then increase the probability of failure inside the circle
from 0.1 to 0.9. The skew factor is 9 in the beginning and
decreases to 1 as we increase the failure probability of the
circle. Figure 8 shows the number of nodes repaired (Fig 8a);
number of edges repaired (Fig 8b); and monitors placed
(Fig 8c) as we increase the imprecision in our initial the
probability distribution of failures.

We note that, although the algorithms might repair slightly
higher/lower number of nodes/edges, but the number of total
repairs (nodes and edges), compared to the optimal, is higher
for smaller skew factors. We observe that, CeDAR places
fewer monitors again in this scenario and has a higher total
number of repairs when the skew factor is high, but when
the skew factor is smaller its performance is close to our
ISR approaches. We underline that since CeDAR’s objective
function is different from ours, we only compare CeDAR with
our algorithms in the scenarios where we want to evaluate the
inaccuracy in the evaluation of the disruption percentage and
skew factor in Figures 7 and 8.

G. Trade-off on demand loss, time complexity, and number of
repairs

The recovery problem can be addressed by giving different
priority to performance aspects such as: 1) demand loss, 2)
execution time and 3) number of repairs (cost). These aspects
are in conflict with each other; therefore, we study the trade-
off between them.

In this scenario, addressed in Figure 9, we considered the
Deltacom topology, where we set the link capacity randomly
in the interval [20, 30]. We compare ISR-SRT to OPT to
determine the amount of demand flow loss in ISR-SRT. We
vary the number of critical demand flows from 1 to 6.
Each demand pair has a requirement of 22 units of flow.
The network disruption is randomly generated according to
a Gaussian geographic distribution that causes the disruption
of 43% of the network components on average.

Figure 9a shows that ISR-SRT performs a smaller number of
necessary repairs than OPT but a much higher number of total
repairs, meaning that ISR-SRT schedules repairs for nodes that
are found to be working. Figure 9b also shows that ISR-SRT
does not meet the demand requirements. The percentage of
satisfied demands drops to 75% when the number of demand
pairs grows to 6.

The reason for demand loss is due to the fact that ISR-SRT
does not consider potential conflicts among different demands,
and the decision on the nodes/links to be repaired is made
separately for every demand pair without considering other
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(a) Number of node repairs.
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(b) Number of edge repairs.
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(c) Number of monitors.
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Fig. 8: Impact of skew factor in the accuracy of the probability
of failed nodes and edges, 50% disruption.

demands of the network. This has two effects. First, it may lead
to the wrong decisions, and therefore increases the number
of unnecessary repairs. Second, the algorithm might make a
routing decision in one iteration for a specific demand pair
which turns to be in conflict with another demand pair in the
next iteration and make it impossible for the second demand
pair to be satisfied. Therefore, the repairs that are required to
route the second demand pair are not performed due to the
conflict, and the demand is not satisfied. This implies that the
number of necessary repairs would be less w.r.t the optimal
solution. Since ISR-SRT has demand loss, we do not consider
the performance of ISR-SRT approach in other experiments.
We underline that the other algorithms, namely OPT, ISR-
BB and ISR-MULT, repair nodes/edges until all demand pairs
are satisfied. In these algorithms, no routing decision is made
before finding a feasible solution for all demand pairs. For
this reason, they never show a demand loss. Since our goal
is to restore all critical services, we do not further evaluate
ISR-SRT. However, due to its low computational complexity,
the algorithm can be used in scenarios where the demand load
is low and a short computation time is required.

In the next experiment we used the same topology, under a
larger disruption, corresponding to 75% of network elements
on average. We consider 5 demand pairs, of 17 flow units each.
In order to evidence the tradeoff between the number of repairs
and computation time, in Figure 10 we vary the gap between
the lower bound of the objective function and the solution of
iterative ISR-BB and ISR-MULT algorithms from 0 to 40%.
We recall that by increasing this gap, we decrease the number
of iterations of the optimization algorithms, and therefore we
obtain an approximation of the solution that is farther from
the optimal. Nevertheless, the increase in the gap has the
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Fig. 9: Trade-off between number of repairs and demand loss.
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Fig. 10: Trade-off between execution time and repairs.
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Fig. 11: Synthetic Erdos-Renyi topology with 100 nodes.

advantage of reducing the computation time remarkably.
Figure 10a shows that, when we increase the gap from 0

to 40%, the difference between the total number of repairs
of ISR-MULT with respect to optimal increases by a factor
of 1.6, while this factor is 3.4 for ISR-BB. Furthermore,
we observe that by running the Heuristic trigger for solution
update, introduced in Section IV-E, the total execution time on
average decreases by a factor of 10.5, while the total number
of repairs increases of only 3.8%. This is mainly due to the
fact that most of the time, after running the first optimization
step, the solution is still valid by using Heuristic IV-E. We
did not include the execution time results for progressive ISP
since its performance has not been optimized to run on multi-
core machines.

In the next scenario, we used synthetic Erdos-Renyi non-
planar graphs. In an Erdos-Renyi graph, any two nodes are
connected through an edge with probability p. We considered
an Erdos-Renyi topology with 100 nodes where each link
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Fig. 12: Increasing demand pairs and flows (BellCanada).

has a capacity of 1,000 units of flow. We set the number
of critical demand pairs to 6, of one unit each. Notice that
with this set of demand flows and capacities, the problem
reduces to establishing connectivity between the endpoints of
the demand pairs. The complexity of the problem increases as
we increase the parameter p and the graph becomes gradually
non-planar. We compare the behavior of ISR-MULT, ISR-BB
and progressive ISP with the optimal solution that would be
obtained in the ideal setting of complete knowledge. In ISR-
MULT and ISR-BB, we set the gap between the lower bound
of the objective function and the solution of iterative ISR-BB
and ISR-MULT algorithms to 50%. Once the gap is satisfied,
we put all fractional variables in the solution and select a
node to repair and continue this procedure until all critical
services are restored. Figure 11b shows the execution time
of the approximate solutions with respect to optimal as we
increase the value of p. We observe that, since MINER is NP-
Hard, the optimal recovery with full information has a very
high execution time, while if we stop the algorithm when the
objective is within 50% of the lower bound, the number of
repairs is still close to optimal in ISR-MULT and ISR-BB, and
the execution time with respect to OPT reduces by a factor of
200 in ISR-BB and 630 in ISR-MULT.

H. Increasing number of demand pairs and amount of flow

In this section, we investigate the impact of the number
of demand pairs and of the amount of demand flow of each
pair, on the number of necessary repairs. We consider the
BellCanada topology, where we set random link capacity with
values in the interval [20, 50]. We increased the number of
demand pairs from 1 to 10, where each demand has a require-
ment of 10 units of flow. Figure 12a shows the simulation
results for this scenario. We used a Gaussian disruption with
disruption variance of 20, which destroys around 40% of the
network. As we increase the number of demand pairs, the
gap between necessary and unnecessary repairs increases in
progressive ISP, while the number of necessary repairs is
still close to optimal. This is mainly due to the fact that
ISP was not designed for uncertain failures. ISR-IBB has the
smallest number of repairs and ISR-MULT’s number of repairs
is between ISP and ISR-IBB.

In the next scenario, we consider the same network topology
and same disruption parameters. We set the number of critical
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TABLE IV: Potential Implication of the proposed algorithms.

Algorithm Cons Pros
ISR-
SRT

Demand loss, cannot satisfy all de-
mands

Low complexity, easy to implement.
Can be used to satisfy small critical
demands in short time.

ISP High number of unnecessary repairs
in high demand load

Low time complexity compared to
ISR-BB and ISR-MULT, works better
than ISR-MULT in low demand load

ISR-
BB

High time complexity due to large
space exploration

Low number of repairs, best for small
topologies. Can be configured to re-
duce the execution time with higher
number of repairs

ISR-
MULT

Moderate time complexity, high
number of repairs in smaller traffics
(can be combined with ISP to have
advantage of both)

Smaller number of repairs compared
to ISP, higher than ISR-BB. Better
restoring performance for large num-
ber of demand flow/pair.

demand pairs to 5 and increased the units of flow per demand
pair from 2 to 10. Figure 12b shows the simulation results in
this scenario for our iterative algorithms and optimal recovery
with full knowledge. We observe that for less than 4 units of
flow, ISP performs slightly better than the ISR-MULT solution
in terms of the number of necessary repairs. However, as we
increase the amount of flow per pair, ISR-MULT and ISR-BB
perform better mainly because ISR-MULT and ISR-BB can
refine their incorrect decisions due to lack of knowledge from
the beginning of the algorithm while ISP is not able to adjust
its solution after initial wrong decisions. For small number
of flows/demand pair, both ISP and ISR-MULT are close to
optimal. We observe that in larger topologies, ISP performs
better than ISR-MULT when the total demand load (sum of
all the demand flow requirements for all the demand pairs)
is lower than 40% of the network capacity. This opens up
the opportunity to have a hybrid scenario for low flow/pair
and high flow/pair scenarios where one can get advantage of
progressive ISP under low demand load and the ISR-MULT
for higher demand load.

Table IV shows the comparison between progressive ISP,
ISR-MULT, ISR-BB and ISR-SRT. We observed that each of
the proposed algorithms has pros and cons, which makes them
suitable for scenarios where we need short execution time,
or higher restoring performance or small number of critical
demand pairs.

VII. CONCLUSION

While there have been several works on timely network
recovery algorithms, far less progress has been seen in the
context of uncertain network failure patterns. This paper
considers, for the first time, a progressive network recovery
algorithm under uncertainty. We use a multi-stage stochastic
optimization technique, called ISR to guess the best feasible
solution set at each iteration using an estimated distribution
of failure. ISR finds a feasible solution using three different
approaches namely ISR-SRT, ISR-BB, and ISR-MULT. From
the elements of this solution, we select the one with the highest
centrality, at each iteration step to repair and exploit it as a
monitor to discover the gray area, until all critical services
are restored. We iterate the process, alternating monitoring,
and repair activities until all critical services are restored. Our
simulation results show that ISR reduces the total cost of repair
significantly with respect to the state-of-the-art ISP algorithm.

We also observed that we could configure our choice of trade-
off between the demand loss, total number of repairs and
execution time.
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