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Abstract

This dissertation explores modeling, monitoring and scheduling techniques for
network recovery from massive failures, with a focus on optimization methods under
uncertain knowledge of failures.
Large-scale failures in communication networks due to natural disasters or ma-

licious attacks can severely affect critical communications and threaten lives of
people in the affected area. In 2005, Hurricane Katrina led to outage of over 2.5
million lines in the BellSouth (now AT&T) network. In the absence of a proper
communication infrastructure, rescue operation becomes extremely difficult. Pro-
gressive and timely network recovery is, therefore, a key to minimizing losses and
facilitating rescue missions. Many prior works on failure detection and recovery
assume full knowledge of failures and use a deterministic approach for the recovery
phase. In real-world scenarios, however, the failure pattern might be unknown or
only partially known. Therefore, classic recovery approaches may not work. To
this end, I focus on network recovery assuming partial and uncertain knowledge of
the failure locations.
I first studied large-scale failures in a communication network. In particular, I

proposed a new recovery approach under uncertain knowledge of failures. I proposed
a progressive multi-stage recovery approach that uses the incomplete knowledge of
failure to find a feasible recovery schedule. From the elements of this solution, I
selected a node with highest centrality at each iteration step to repair and exploit
as a monitor to increase the knowledge of network state, until all critical services
are restored. The recovery problem can be addressed by giving different priority to
three performance aspects including: 1) Demand loss, 2) computation time and 3)
number of repairs (or repair cost). These aspects are in conflict with each other
and I studied the trade-off among them.
Next, I focused on failure recovery of multiple interconnected networks. In par-
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ticular, I focused on the interaction between a power grid and a communication
network. I modeled the cascading failures in a power gird using a DC power flow
model. I tackled the problem of mitigating an ongoing cascade by formulating the
minimum cost flow assignment problem as a linear programming optimization. The
optimization aimed at finding a minimum cost DC power flow setting that stops
the cascading failure, where the total cost is defined as the total weighted amount
of unsatisfied load due to the re-distribution of the power in the generators and
loads without violating the overload constraint at each line.
Then, I focused on network monitoring techniques that can be used for diag-

nosing the performance of individual links for localizing soft failures (e.g. highly
congested links) in a communication network. I studied the optimal selection of
the monitoring paths to balance identifiability and probing cost. I considered four
closely related optimization problems: (1) Max-IL-Cost that maximizes the number
of identifiable links under a probing budget, (2) Max-Rank-Cost that maximizes the
rank of selected paths under a probing budget, (3) Min-Cost-IL that minimizes the
probing cost while preserving identifiability, and (4) Min-Cost-Rank that minimizes
the probing cost while preserving rank. I showed that while (1) and (3) are hard to
solve, (2) and (4) possess desirable properties that allow efficient computation, while
providing good approximation to (1) and (3). I proposed an optimal greedy-based
approach for (4) and proposed a (1− 1/e)-approximation algorithm for (2). My
experimental analysis revealed that, compared to several greedy approaches that
directly solve the identifiability-based optimization (i.e. (1) and (3)), the proposed
rank-based optimization (i.e. (2) and (4)) achieved better trade-offs in terms of
identifiability and probing cost.
Finally, I addressed, a minimum disruptive routing framework in software defined

networks. I showed that flow disruption, congestion and violation of policies can oc-
cur during updates of flow tables in software defined networks. I aimed to minimize
the update disruption and minimize the number of affected flows during the update,
while taking into account link capacity constraints and the importance of various
flows to upper-layer applications. I formulated the problem as an integer linear
programming and showed that it is NP-Hard. I proposed two randomized rounding
algorithms with bounded congestion and demand loss to solve this problem. In
addition to a small SDN testbed, I performed a large-scale simulation study to
evaluate my proposed approaches on real network topologies. Extensive experimen-
tal and simulation results show that the two random rounding approaches have a
disruption cost close to the optimal while incurring a low congestion factor and a
low demand loss.
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Chapter 1
Introduction

Large-scale failures due to natural disasters or malicious attacks can severely affect
operation of critical infrastructures and cause catastrophic economic and social
disruptions. Communication networks and power grids are examples of such critical
infrastructures that are highly vulnerable to such failures. In 2005, Hurricane
Katrina led to outage of over 2.5 million lines in the BellSouth (now AT&T)
network [2]. In 2003, a large cascading blackout, in northeast of the United States,
led to over 50 million people losing power, some for several days. The overall cascade
propagation lasted approximately four hours, during which a cascade prevention
mechanism could have stopped further propagation of the failure and lowered cost
of recovery.
The leading causes of these failures has been reported to be inadequate training,

planning and operations studies to respond to the emergency situations [3,4], which
highlights the necessity for a holistic control and recovery approach that has the
ability to use the real-time data taken from a monitoring network to predict and
prevent possible failures. Furthermore, it is crucial to have a strategic recovery plan
that effectively utilizes the available resources and maximizes the total operation
of the disrupted services during the recovery time.
In this dissertation, I first study large-scale failures in (i) communication networks

in Chapter 2 and (ii) an interdependent power grid and it’s monitoring network in
Chapter 3. I then focus on network monitoring techniques that can be used for
diagnosing individual links’ performance or localizing the failures. In Chapter 4, I
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study the optimal selection of the monitoring paths to balance identifiability and
cost. In Chapter 5 I study a minimum disruptive way of updating on flow rules for
software defined networks.

1.1 Motivation and Challenges

Despite considerable research in the past few decades leading to multi-fold im-
provements on large-scale failure detection and mitigation approaches, the problem
has become more interesting and challenging for three main reasons: (1) Lack
of complete knowledge, (2) Interdependency between multiple networks, and (3)
Progressive recovery. In the following subsections, I summarize the three reasons.

1.1.1 Lack of Complete Knowledge

Almost all failure recovery and prevention algorithms assume complete infor-
mation about the failures and ignore the uncertainty caused by failure of the
dependent monitoring systems. In a real system, one needs to assume that only
incomplete data may arrive at control centers due to failures in the underlying
communication and monitoring network. Network recovery and failure prevention
is a challenging problem under uncertainty of the exact location of the disrupted
network components.
To clarify the discussion, consider Deltacom topology taken from the Internet

Topology Zoo shown in Figure 1.1 [1, 5]. After a large-scale failure occurs in the
network, the state of the entire network is not visible to the network manager or
control centers. Instead, the network manager knows that some nodes and links
have failed, some continue to work and the fate of others is uncertain. The working
nodes and links are shown with green color in Figure 1.1, the broken nodes and
links are shown in red and the uncertain nodes and links are shown in grey. The
main challenge is that the status of grey nodes and links is unknown to the network
manager and therefore, current recovery techniques that assume complete and
accurate information is accessible, might not work as they should. To this end, I
propose an itrative stochastic recovery approach (ISR) in Chapter 2, that runs a
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Figure 1.1: Large-scale failure in Deltacom topology.

multi-stage stochastic optimization algorithm. At each iteration step, ISR finds
a feasible solution set and selects a candidate node to repair and exploits it as a
monitor to discover the surrounding network. The procedure is repeated until all
critical services are restored.

1.1.2 Interdependency between Multiple Networks

Most of the research on large-scale failure management has concentrated on the
recovery of a single network [6–8]. Many man-made or natural systems can be
modeled as an interconnection of multiple networks, where the nodes are the system
components and the edges show the interaction or dependency between different
components. Because of the dependency between different components in multiple
networks, perturbations caused by physical attacks or natural disasters in one node
can cascade and affect other nodes in the system. The cascaded failure can repeat
multiple times, feeding on itself and accelerating, eventually resulting in a total
failure of the whole system.
Most of the work on the recovery and cascade prevention algorithms, concentrate

on one network, while today’s critical infrastructures are highly interconnected
and mutually dependent on each other. For example, the operation and reliability
of the electric power networks relies on the operation of the control communica-
tion network that provides the required information about the power lines being
overloaded. In addition to the power grids and communication networks, other
critical infrastructures are also coupled together, such as food supply and water
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Figure 1.2: Different steps of the proposed progressive recovery approach.

systems, financial transactions and power grids, transportation systems and food
supply. Today, critical infrastructures are becoming increasingly correlated and
interdependent. Therefore, modeling and understanding the interactions between
multiple networks and designing failure resilient infrastructures is crucial for the
reliability and availability of many applications and services.

1.1.3 Progressive Recovery

Restoring critical services after a large-scale disruption or a cascaded failure
is not a one shot operation. The amount of repair resources required to restore
damaged network elements may vary over time. Also, each network element might
require a different amount of resources to be restored. Therefore, finding the
optimal assignment of resources to maximize the recovery over time is a challenging
problem. To the best of my knowledge, the proposed progressive recovery approach
is the first work that studies progressive recovery of a disrupted network under
uncertainty. Figure 2.1 shows different steps of the proposed recovery approach.
At each iteration step, based on the available resources, the proposed algorithm
repairs some of the damaged network elements, performs a monitoring step and
gains more information and iterates this procedure until all critical services are
restored.
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1.2 My Contribution

This dissertation aims to provide comprehensive solutions for accurately modeling,
monitoring and scheduling the recovery of the network from large-scale failures
under uncertain knowledge of failures. Specifically, I focus on four main goals: (1)
Minimizing the number of repaired elements, (2) Minimizing the amount of demand
loss, (3) Minimizing the execution time and (4) Minimizing the cost of monitoring
probes. I briefly explain these goals in the following three subsections.

1.2.1 Network Recovery from Massive Failures under Uncertain
Knowledge of Damages

In Chapter 2, I tackle for the first time, the problem of network recovery af-
ter massive disruption under uncertainty of the exact location of the disrupted
nodes/links. I formulate the minimum expected recovery (MINER) problem as a
mixed integer linear programming and show that it is NP-Hard. MINER aims
at satisfying the critical demand flows while minimizing the proposed expected
recovery cost (ERC ) function under network capacity constraints. The proposed
iterative stochastic recovery (ISR) approach recovers the network in a progressive
manner while satisfying the critical service demands [9]. At each iteration step,
ISR makes a decision to repair a part of the network and gathers more information
by putting a monitor on the selected node. I propose several algorithms to find a
feasible solution set at each iteration of the algorithm. Experimental results show
that ISR outperforms the state-of-the-art ISP algorithm while having a configurable
choice of trade-off between the execution time, number of repairs and demand loss.

1.2.2 Controlling Cascading Failures in Interdependent Networks
under Incomplete Knowledge

In Chapter 3, I show that the inter-connectivity and dependency between different
elements makes complex networks more vulnerable to failure [10,11]. I study the
inter-dependency between a power grid and a communication network. I propose a
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failure mitigation strategy that first detects the failure and limits further propagation
of the disruption by re-distributing the generator and load’s power. I then formulate
a recovery plan to maximize the total amount of power delivered to the demand loads
during the recovery intervention. The cascade mitigation problem is formulated as
a linear programming optimization that minimizes the cost of new flow assignment
(Min-CFA) and aims at finding a DC power flow setting that stops the cascading
failure at minimum cost. The recovery phase aims at maximizing the restored
accumulative flow. I show that the recovery problem (Max-R) is NP-Hard and
propose heuristic recovery strategies that work under partial knowledge of damage
locations. I propose a consistent failure set algorithm (CFS) to locate the failures.

1.2.3 Optimizing Cost-Identifiability Trade-off for Probing-based
Network Monitoring

In Chapter 4, I study the optimal selection of monitoring paths to balance
identifiablity and cost [12, 13]. To this end, I considered four closely related
optimization problems: (1) Max-IL-Cost that maximizes the number of identifiable
links under a probing budget, (2) Max-Rank-Cost that maximizes the rank of
selected paths under a probing budget, (3) Min-Cost-IL that minimizes the probing
cost while preserving identifiability, and (4) Min-Cost-Rank that minimizes the
probing cost while preserving rank. I show that while (1) and (3) are hard to
solve, (2) and (4) posses desirable properties that allow efficient computation
while providing good approximation to (1) and (3). I proposed an optimal greedy-
based approach for (4) and proposed a (1− 1/e)-approximation algorithm for (2).
Experimental analysis reveals that, compared to several greedy approaches, my
rank-based optimization performs better in terms of identifiability and probing
cost.
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1.2.4 A Minimally Disruptive Rule Update in Software Defined
Networking

Rule forwarding updates occur very frequently in SDN networks due to arrival of
new traffic, topology changes and network re-configurations; they are an inseparable
part of network management and traffic engineering systems. Service disruption
and inconsistencies can occur during the updates leading to degraded quality of
service or disconnectivity of the exisiting services. In Chapter 5, I study network
reconfiguration techniques in software defined networks. I introduce a minimally
disruptive rule update problem (Min-touch) and show that it is NP-Hard. I
propose two randomized rounding algorithms with bounded approximation factors
on congestion and demand loss.

1.3 Organization

The remainder of the dissertation is organized as follows. Chapter 2 proposes a
progressive recovery approach that iteratively restores critical services and monitors
the network to detect the failures [9]. Chapter 3 studies the inter-dependency
between a power grid and a communication network [10]. I propose a failure
mitigation strategy that first detects the failures and limits further propagation of
the disruption by re-distributing the generator and load’s power. I then formulate a
recovery plan to maximize the total amount of power delivered to the demand loads
during the recovery intervention. In Chapter 4, I study the optimal selection of
monitoring paths to balance identifiability and cost [12]. Chapter 5 studies network
reconfiguration with minimum disruption to the existing flows. I propose two
randomized rounding algorithms with bounded approximation factors on congestion
and demand loss. Finally, I conclude the dissertation and discuss the future work
in Chapter 6.
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Chapter 2
Network Recovery from Massive
Failures under Uncertain Knowledge
of Damages

Large-scale failures in communication networks due to natural disasters or ma-
licious attacks can severely affect critical communications and threaten lives of
people in that area. The aggregate monetary cost of Hurricane Katrina was 108
billion dollars [14]. The storm led to the loss of service over 2.5 million lines on the
BellSouth (now AT&T) network [2]. In the absence of a proper communication
infrastructure, rescue operation becomes extremely difficult. Progressive and timely
network recovery is therefore, a key to minimizing losses and facilitating rescue
missions. Many prior works on failure detection and recovery assume full knowledge
of failures and use a deterministic approach for the recovery phase, e.g., [6, 8]. In
real-world scenarios however, the failure pattern might be unknown or only partially
known. Therefore, classic recovery approaches may not work, as they should. To
this end, I focus on network recovery assuming partial and uncertain knowledge of
the failure pattern.
In this Chapter, I propose a multi-stage stochastic recovery algorithm, that uses

three optimization techniques to repair a part of the network at each iteration
assuming partial knowledge of failures until critical services are restored.
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2.1 Introduction

Large-scale failures in communication networks due to natural disasters or malicious
attacks can severely affect critical communications and threaten lives of people in
that area. In 2005, Hurricane Katrina led to an outage of over 2.5 million lines in
the BellSouth (now AT&T) network [2]. In 2017, more than 7 million subscribers to
cable or wire-line telecommunication services lost service due to Hurricane Irma [15].
In the absence of a proper communication infrastructure, rescue operation becomes
extremely difficult. Progressive and timely network recovery is therefore, a key to
minimizing losses and facilitating rescue missions. Many prior works on failure
detection and recovery assume full knowledge of failures and use a deterministic
approach for the recovery phase, e.g., [6, 8]. In real-world scenarios however, the
failure pattern might be unknown or only partially known. Therefore, classic
recovery approaches may not work, as they should. To this end, I focus on network
recovery assuming partial and uncertain knowledge of the failure pattern.
I propose a multi-stage stochastic recovery algorithm, that uses three optimization

techniques to repair a part of the network at each iteration until critical services are
restored. To clarify the discussion, I consider different states of network components.
Depending on the available knowledge, I consider the network to be partitioned
in three areas: 1) a green area where all nodes/edges are known to be working, 2)
a red area where the status of nodes/edges is known to be failed, and 3) a gray
area where the status of nodes/edges is unknown. I improve the knowledge of the
network state by installing monitors on top of the nodes repaired at each iteration.
A monitor is a piece of software, which can be installed on a working node to
discover the reachable nodes. Monitor nodes provide additional information about
the status of the network, which can be used to revise and improve the recovery
plan. The contributions of this work are the following:

• I tackle for the first time the problem of network recovery after massive
disruption under uncertainty of the exact location of the disrupted nodes/links.

• I formulate the minimum expected recovery (MINER) problem as a mixed
integer linear programming and show that it is NP-Hard. MINER aims at
satisfying the critical demand flows while minimizing the proposed expected
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recovery cost (ERC ) function under network capacity constraints.

• I propose a multi-stage iterative stochastic recovery (ISR) algorithm, that is
presented in three different versions (depending on the optimization algorithm
that is used), namely, Iterative shortest path (ISR-SRT), Iterative Branch and
Bound (ISR-BB), and iterative multi-commodity LP relaxation (ISR-MULT)
to find a feasible solution and solve the MINER problem.

• In order to provide a fair comparison with my approach, I modified the
state-of-the-art iterative split and prune (ISP) algorithm [6], presented as
progressive ISP to work under uncertainty, by allowing a progressive approach
and adding a discovery phase at each iteration. I show that since ISP does
not consider uncertain failures and makes routing decisions at each iteration
step, it may lead to incorrect routing decisions due to uncertainty which leads
to higher repair cost compared to my algorithms.

• Further, I compare my algorithms with the state-of-the-art Centrality based
Damage Assessment and Recovery (CeDAR) algorithm [16]. CeDAR works
under incomplete knowledge of failure but aims at maximizing the total
satisfied flow during the recovery process, while I aim at minimizing the
recovery cost. Further, CeDAR does not use a probabilistic knowledge of
failures. Experimental results show that ISR-BB and ISR-MULT outperform
the state-of-the-art ISP and CeDAR algorithms in terms of recovery cost.

I observed that since the algorithms in [6] have been designed for known network
failure patterns, poor decisions in the first iterations of the algorithm propagate
through the entire execution, while my algorithm can correct previous decisions
after each iteration as more information becomes available and therefore, reduces
the recovery cost. Different configurations of my algorithm can significantly improve
the total number of repairs over other heuristics while performing close to the
optimal in terms of recovery cost.
The remainder of this chapter is organized as follows. Section 2.2 discusses

the background and motivation behind this work. In Section 2.3, I explain the
minimum expected recovery (MINER) problem and show it is NP-Hard. Section 2.4
describes my approach to minimize the expected recovery cost. Section 2.6 shows
my evaluation methodology and experimental results and Section 2.7 concludes the
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chapter with a summary.

2.2 Background and Motivation

2.2.1 Background

Large-scale network failure detection and recovery has been studied when full
knowledge of the failure pattern is available in the system [7,17–24]. To the best of
my knowledge, network recovery has not been extensively studied under uncertainty.
In the absence of complete knowledge of disrupted network components, prior

works propose network tomogrpahy techniques to localize node failures from binary
states of end-to-end paths, infer the performance degradation of links or identifying
system performance from large noisy data sets [25–32]. However, binary tomography
approaches are limited to localizing sparse failures and cannot be applied to large-
scale disruptions.
In a different line of research the problem of network recovery has been studied in

the case of interdependent networks [33–35]. Dependent failures in interdependent
networks between a power grid and a communication network has been studied in
[34]. Tootaghaj et al. propose a progressive recovery approach in an inter-dependent
network consisting of a power grid and a communication network [33]. They assume
a limited amount of resources available at each iteration step and propose a
progressive recovery heuristic that restores the power lines while maximizing the
total load served during the recovery intervention.
Wang et al. and Ciavarella et al. studied progressive network recovery for large-

scale failures. They proposed a progressive recovery approach to maximize the
weighted sum of total flow over the entire steps of recovery [8,16]. While both Wang
et al. and Ciavarella et al.’s work and my work aim to design a progressive recovery
approach, the objective is different. In [8] and [16], the objective is maximizing the
throughput over time, whereas I aim to minimize the total cost of repair under link
capacity constraints, which is closer to the work of Bartolini et al. [6]. In addition,
both [8] and [6], assume that full knowledge of failure is available in the system
while my work and [16] do not make this assumption. I assume availability of a
probabilistic estimate of the failure scenario, while [16] assumes lack of knowledge.
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The problem of minimizing the recovery cost to satisfy multiple demand flows
under network capacity or quality of service constraint has been proven to be
NP-hard and several heuristics have been proposed in the literature to reduce the
complexity. Bartolini et al. propose a polynomial-time heuristic, called ISP, to break
the problem into smaller sub-problems using iterative split and prune [6]. While
this approach performs very close to the optimal when full knowledge of network
failure is available, its performance has not been investigated under uncertain failure
patterns.
I propose a progressive version of ISP in Section 2.5.1 and show that the lack

of detailed information regarding the status of the network components causes a
considerable amount of additional repairs with respect to the ideal case of complete
knowledge. Then, I show that by running my multi-stage recovery approach,
the total number of repairs is reduced compared to ISP and unnecessary repairs
are avoided. Furthermore, I show that single-stage optimization techniques or
iterative algorithms, which do not update the initial beliefs, do not perform well
for uncertain failures. This is due to the fact that a small mistake at the beginning
of the single-stage optimization algorithms propagates through the following steps
and no corrective actions can be taken.
I design a novel iterative algorithm to have an approximate solution to the problem

of network recovery under uncertainty of the status of network components. Unlike
previous algorithms, my approach provides an iterative monitoring activity, which
allows more informed decisions and corrective actions as long as more information
becomes available.

2.2.2 Motivation

In this section, I show the gap between optimal recovery and ISP [6] when I do
not have perfect information.
Consider a network in which a large-scale failure has occurred. Due to the failures,

the state of the entire network is not visible to the network manager. Instead,
the network manager knows that some nodes and links have failed, some continue
to work, and the fate of others is uncertain (gray), meaning that their state is
only known with some probability. If I use an algorithm like ISP to determine
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Table 2.1: Number of repaired nodes/edges in optimal and ISP with full information
compared to ISP with gray area and uncertain-info, and progressive ISP.

Network Name OPT full-info ISP full-info ISP uncertain-info Progressive ISP
BellCanada 28 34.23 79 45.39
Deltacom 36.94 43.26 112 55.5
KDL 55.2 63.2 165.65 83.55

the required repairs, it is likely that mistakes will be made due to the uncertain
knowledge. ISP determines all the required repairs in one-shot, meaning that
once the algorithm is run, all repairs are determined. Therefore, it does not have
an opportunity to learn the state of the uncertain nodes. I performed a set of
simulations on three different network topologies to illustrate the gap in performance
between ISP run with full knowledge vs. uncertain knowledge. I first give the full
information of the failure pattern to the system and solve the optimal NP-Hard
recovery with full knowledge (OPT full-info) and the state-of-the-art ISP with
full knowledge (ISP full-info). Next, I assume the whole network is gray, with an
estimated failure distribution (uncertain-info), and run the state-of-the-art ISP
algorithm where the cost of repair for each node/edge is proportional to its failure
probability.
Table 2.1 shows the average total number of repairs for the three algorithms on

the three topologies for 10 random runs. As is shown, ISP with full information
performs relatively close to the optimal in each case, while ISP with uncertain
information requires more than three times the number of repairs as optimal in
some cases.
I then modified ISP, as described in Section 2.5.1, to run in iterations, where in

each iteration a repair is made. Information about network state is then gathered for
any new portions of the network now visible due to the repair, and the algorithm is
run again with the new information until all demands are met. I call this algorithm
progressive ISP. As can be seen in the Table, progressive ISP drastically reduces
the repairs compared to ISP with uncertain information.
However, the gap between progressive ISP and OPT full-info is still large which

motivates me to develop my iterative stochastic recovery (ISR) algorithm that
progressively repairs network elements and updates its knowledge of the state of
the network.
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Table 2.2: Summary of notations.

Notation Explanation
G = (V,E) undirected graph modeling the communication network.

V is the set of nodes and E is the set of links.
EH set of (source, destination) demand pairs.
EB ⊆ E the set of broken edges in the red area.
VB ⊆ V the set of broken nodes in the red area.
EU ⊆ E the set of edges in the gray area whose failure pattern is

unknown.
VU ⊆ V the set of nodes in the gray area whose failure patterns

is unknown
EW ⊆ E the set of edges in the green area which are known to be

working correctly.
VW ⊆ V the set of nodes in the green area which are known to

be working correctly.
ζv

i (n) the failure probability of node vi in the network at the
nth iteration.

ζe
ij(n) the failure probability of edge eij in the network at the

nth iteration.
ke

ij(ζe
ij(n)) the cost of repairing edge eij in the network.

kv
i (ζv

i (n)) the cost of repairing vertex vi in the network.
cij the capacity of edge (i, j).
fh

ij(n) the fraction of flow h that will be routed through link
(i, j).

ηmax the maximum degree of the network.
bh

i (n) the flow h generated at node i.
δe

ij the decision to repair link (i, j) ∈ E.
δv

i the decision to repair node i ∈ V .

2.3 Problem Definition

I consider the problem of restoring critical services in a network subject to a
large-scale failure, under uncertain knowledge of the failure extent. More specifically,
in the absence of detailed knowledge of which are the failed components of the
network, I assume availability of a probabilistic estimate of the failure scenario,
given in the form of a geographical distribution of the failure probability of the
network devices, namely nodes and links. To this purpose, I assume knowledge of
the probability of failure of each node/link in the gray area, which can be found
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Figure 2.1: Different steps of my progressive recovery approach.

using machine learning algorithms [36, 37], seismography analysis in case of an
earthquake [38], or understanding the robustness of different parts of the network.
The network elements in the gray area might have geographical or independent
correlation of failures [39]. For example, if I am certain that a router in a specific
building is failed, it is more likely that other nodes/links in that building are also
failed due to building collapse. I model the intensity of the disruption according to
a geographic failure distribution. This may be a bi-variate Gaussian function, whose
variance determines the extent of the disruption around the epicenter of a disruptive
event, or any other geographical distribution. In the absence of information on the
probabilistic model of the disruption, I consider a uniform distribution of failures. I
am interested in gradual recovery of the network such that the total cost of repaired
nodes/edges during all steps of the recovery is minimized.
Figure 2.1 shows different steps of the proposed recovery approach. At each

iteration step, based on the current knowledge of the network state, I repair
some of the damaged network elements, perform a monitoring step and gain more
information and iterate this procedure until all critical services are restored.

2.3.1 Network Model

Given an undirected graph G = (V,E) and a set of demand pairs EH =
{(s1, t1), ..., (sk, tk)}, where EH ⊆ V × V and each demand pair (sh, th) ∈ EH

has a source sh, a destination th and a positive demand flow dh, the goal is to
minimize the expected recovery cost (ERC) to satisfy the demands while having
capacity constraint cij for every edge in the graph. Table 5.1 shows the notation
used in this chapter.
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Figure 2.2: An example of a failure in a real network topology from the internet
topology zoo [1].

The nodes and edges in the graph G = (V,E) belong to three different categories:

1. the sets EB ⊆ E and VB ⊆ V are the set of broken edges and nodes in the
red area which I know for sure have failed,

2. the sets EU ⊆ E and VU ⊆ V are the sets of edges and nodes in the gray area
whose failure patterns is unknown,

3. the sets EW ⊆ E and VW ⊆ V are the sets of nodes and edges in the green
area which are known to be working correctly in the system.

To clarify the discussion, consider the network shown in Figure 2.2. Assume there
exists a massive failure in the gray area in Figure 2.2. At the beginning of the
recovery process, I do not have complete knowledge about the failures and the
network is partitioned into a green, red and gray area. It is possible that the nodes
in the middle of the gray area have not failed and therefore, recovery of a few nodes
in the gray area may lead the whole graph of the network to be connected.
At the beginning of the iterative recovery process, I assume that all the working

demand endpoints are monitoring nodes which can discover the status of up to m
hops in the network. Later, as I repair more nodes/edges in the network, I exploit
the repaired nodes as monitors to discover the gray area and adjust the initial
estimate ζ(0) about the failure probability distribution.
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2.3.2 Recovery Problem

To model the optimization problem as a decision making process which includes
uncertainty, I model the cost of repair as a function of the failure probability for each
node/edge in the network. My estimate of the probability of failure in the location
of the considered network elements at the nth iteration is ζ(n) = {ζe

ij(n) ∀eij ∈
E, ζv

i (n) ∀vi ∈ V }, where ζv
i (n) and ζe

ij(n) are representing my estimate about
the failure probability of node vi and edge eij in the network at the nth iteration.
I use heterogeneous non-uniform cost function in my evaluation, where kv

i and
ke

ij is the cost of repairing each vertex vi and edge eij in the network. Therefore,
the objective function is to minimize the expected recovery cost (ERC) given the
information from the monitoring nodes to satisfy the given demand.
The MINER problem to find a feasible solution set at the nth iteration can be

formulated as follows:

minimize
∑

(i,j)∈EU∪EB

ke
ij · ζe

ij(n)δe
ij(n)+ (2.1a)

∑
i∈VU∪VB

kv
i · ζv

i (n)δv
i (n)

subject to cij.δ
e
ij(n) >

|EH |∑
h=1

fh
ij(n) + fh

ji(n), ∀(i, j) ∈ E (2.1b)

δv
i (n) · ηmax >

∑
(i,j)∈EB

δe
ij(n), ∀i ∈ V (2.1c)∑

j∈V
fh

ij(n) =
∑

k∈V
fh

ki(n) + bh
i (n),

∀(i, h) ∈ V × EH (2.1d)

fh
ij(n) > 0, ∀(i, j) ∈ E, h ∈ EH (2.1e)

δv
i (n), δe

i,j(n) ∈ {0, 1}, ∀(i, j) ∈ E, ∀i ∈ V (2.1f)

where the binary variables δe
ij(n) and δv

i (n) represent the decision to use link
(i, j) ∈ E and node i ∈ V in the routing at iteration n, cij is the capacity of edge
(i, j), fh

ij(n) is the fraction of flow h that will be routed through link (i, j), ηmax is
the maximum degree of the network, and bh

i (n) is the flow h generated at node i
which is positive if i is the source of the flow (bh

i (n) = dh) and negative if i is the
destination of the flow (bh

i (n) = −dh); ke
ij and kv

i are the repair cost of edge (i, j)
and vertex i. The recovery cost is heterogeneous and depends on the location of
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the nodes/edges.
Constraint 6.1a specifies that the fraction of flow that will be routed through link

(i, j) has to be smaller than or equal to the capacity of that edge; constraint 6.1b
specifies that the degree of each node is smaller than or equal to the maximum
degree of the network; 6.1c shows the flow balance constraint, i.e. the total flow out
of a node is equal to the summation of total flow that comes into a node and the
net flow generated/consumed at the node; 6.1d states that I consider non-negative
assignment of flows and finally 6.1e shows the binary variables representing the
decisions to use nodes and edges at iteration n. My goal here is to minimize the
expected recovery cost. Since my initial estimate about the failure in the system is
not always correct, it may happen that I try to repair a gray node/edge which is
not failed, but simply isolated from the working components. This is unavoidable
in some cases. Nevertheless, it is an unwanted event. For this reason, I distinguish
between necessary and unnecessary recovery interventions. I associate a cost to
the intervention on an unknown but working network element, to take account
of the cost to send personnel to make a local inspection of the device. In the
evaluation, I consider a metric called unnecessary repairs which corresponds to the
total number of nodes/edges in the gray area, ni ∈ VU , ei,j ∈ EU , which I decide
to use, δe

ij, δ
v
i = 1, and are found to be properly functional after a local inspection.

On the other hand, necessary repairs are the total number of nodes/edges in the
gray or red area, ni ∈ {VU ∪VB}, ei,j ∈ {EU ∪EB} which I decide to use, δe

ij, δ
v
i = 1

and are found to be broken.

Theorem 1 The problem MINER is NP-Hard

Proof of theorem 1 The Steiner Forest problem which is NP-Hard and APX-
Hard in general graphs [133–135], is a special case of my optimization problem.
To reduce the Steiner Forest problem to an instance of MINER problem, I create
one unit of demand flow for each demand pair in the supply graph. I assume all
source/destination pairs in the supply graph are the set of node pairs in the Steiner
Forest problem for which I want to find a forest with minimum cost. Furthermore,
I assume there exist no broken/gray nodes in the supply graph and all edges are
broken with expected repair cost of ke

ijζ
e
ij . I also assume that the capacity of edges

is large enough to accommodate the sum of all demand flows. Since there exists no
broken node, this instance of MINER returns a set of edges to recover, and since
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the capacity of links are large enough to accommodate the sum of all flows, a single
path between any source/destination pair suffices to accommodate the demand.
Therefore, the union of repaired edges generates a Steiner forest because any cycle
implies unnecessary repairs. Also, since MINER minimized the repair cost, the
forest is the one with minimum cost. Therefore, MINER problem is also NP-Hard.

2.4 Iterative Stochastic Recovery Algorithms

In this section, I propose the Iterative Stochastic Recovery (ISR) algorithm, in
its three variants, namely, Iterative shortest path (ISR-SRT), Iterative branch and
bound (ISR-BB), and iterative multi-commodity (ISR-MULT). The skeleton of
these versions follow the same structure and only differ in terms of the approximate
algorithm they use. I summarize ISR algorithm in six main steps shown in Figure 2.3
and Algorithm 1.
Initially, ISR starts by estimating the probability distribution of the network

failure (Step 1). At each iteration, ISR uses an approximate algorithm to build
a partial solution set of candidate network components to repair, St = {(i ∈
VU ∪ VB |δi = 1), ((i, j) ∈ EU ∪ EB |δij = 1)} (Step 2). In my evaluation, I
do not consider infeasible problems, i.e., there exists at least one feasible solution
which can satisfy all critical services.
I use three different optimization techniques explained in Section 2.4.1 to build

the partial solution set. The partial solution minimizes the MINER problem based
on the current estimated costs which can change as I gain more knowledge about
the gray area. In step 3, the nodes in the partial solution set St, are ranked based
on the amount of flow in critical services that they are likely to route, and a node
with the maximum value is selected as a candidate node (Steps 3 and 4). I repair
the candidate node, and use it to monitor (Step 5) the surrounding network and
obtain more information about the status of the network. In step 6, the algorithm
updates the previous estimate of the costs after the discovery. The procedure is
repeated until all the demands are satisfied or no more repairs are possible although
there is a demand loss.
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Figure 2.3: Different steps of the proposed iterative stochastic recovery (ISR).

2.4.1 An Approximate Feasible Solution

This section describes the three different proposed approaches to find an ap-
proximate feasible solution, step (2) in Figure 2.3, of the MINER problem. I use
this approximate solution set (St) to select a candidate node to repair and gain
information in the ISR algorithm. The first alternative is to use an iterative shortest
path algorithm, which has lower time complexity compared to the other approaches
but may not satisfy all the demands. The second alternative, is to use an iterative
branch and bound, which has high complexity due to large space exploration but
gives a solution very close to the optimal in terms of repair cost; and finally, I use
an iterative multi-commodity relaxation of the problem to reduce the execution
time but with higher repair cost with respect to the iterative branch and bound
solution.

2.4.1.1 Iterative Shortest Path (ISR-SRT)

This intuitive heuristic first sorts all the demand pairs in decreasing order of
demand flows, and repairs all the shortest paths that are necessary to satisfy
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Algorithm 1: Iterative Stochastic Recovery (ISR)
Data: The supply graph G, demand graph H, EU , VU , EB, VB, EW , VW ,

initial belief about the failure pattern ζ(0)
Result: Set of nodes/edges to be recovered to satisfy the demand

1 DemandSatisfied= False;
2 t= 0;
3 Solution = ∅ ;
4 while DemandSatisfied !=True do
5 Find an approximate solution set of nodes/edges to repair from the

MINER problem that satisfy the demand:
St = {Vs(t) ∈ (VB ∪ VU), Es(t) ∈ (EB ∪ EU)} using ISR-SRT, ISR-BB, or
ISR-MULT.;

6 if St == ∅ then
7 DemandSatisfied = True;
8 break;
9 else

10 SelectedNode = Select a node with highest flow in the current solution
St ;

11 if |SelectedNode| > 1 then
12 SelectedNode = Select the node with maximum failure probability ;
13 Repair the SelectedNode, ni and edges attached to it, enij ∈ St ;
14 Solution = Solution ∪ ni ∪ enij∈St ;
15 Put a monitor on the selected node and run m-hop discovery phase;
16 t = t+ 1 ;
17 Update the estimated belief ζ(t) from failure probability distribution

from the discovered nodes/edges ;

18 return Solution

each demand separately, without considering potential conflict among them. To
account for the impact of uncertainty, I use a new notion of path length. For a
path at the nth iteration, the length of each link eij ∈ E is defined as l(n)(eij) =
ke

ij · ζe
ij(n) + (kv

i · ζv
i (n) + kv

j · ζv
j (n))/2, where ke

ij · ζe
ij(n), kv

i · ζv
i (n) and kv

j · ζv
j (n) are

the expected cost of repair for edge eij and nodes i and j based on the estimated
probability distribution at the nth iteration. Therefore, the algorithm finds the
shortest expected repair cost paths for each demand pair to repair independently. I
run the full optimization based on the current estimated costs each time, repair one
node and put a monitor on the repaired node, and then run the optimization with
the updated cost again. Since the algorithm does not consider potential conflicts
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among demand pairs, it is possible that only a portion of demand pairs will be
satisfied in the network. The advantage of this algorithm is its polynomial time
complexity since it only needs to find the shortest cost paths of all demand pairs
which makes it a good candidate for situations, where a small amount of critical
demands needs to be satisfied in short period of time.

2.4.1.2 An Approximate Iterative Branch and Bound (ISR-BB)

As a second option to determine a more accurate estimate solution of the problem,
I use an iterative branch and bound optimization [40]. The algorithm starts by
finding a solution of the problem by removing the integrality restrictions. The
resulting linear programming relaxation of MINER gives a solution for the Multi-
Commodity Flow relaxation of the problem [41]. The multi-commodity relaxation
has a polynomial time complexity and gives a lower bound (LB) for the minimization.
If the solution satisfies all integrality restrictions, then I have the optimal solution,
otherwise, I pick a fractional variable, δx, and make two branches by creating
two more constraints in the optimization (δx = 0 and δx = 1). I continue this
procedure by making more branches to get closer to optimal. The smallest branch
that satisfies all integrality constraints is called an incumbent. I stop branching
once the gap between the incumbent’s objective function and the lower bound in
the first iteration on the objective function is smaller than a threshold (Gap), or I
can stop branching after passing a given time limit. In the first case the algorithm
gives a solution with an objective function within (100 ∗Gap)/LB percentage of
the optimal. In the second case, there is no guarantee on the bound but I have a
guarantee on the execution time of the algorithm. In the worst-case scenario, I need
to put all fractional variables from the LP-relaxation of MINER in the solution set.
At each iteration, I run the optimization with the current estimation of the costs,
repair one node and run the discovery phase, and then run the optimization with
the updated costs again.
The advantage of this algorithm is its low recovery cost. Although the execution

time is high due to exploration of all possible branches, I can trade-off recovery
cost to reduce the execution time.
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2.4.1.3 An Iterative Multicommodity (ISR-MULT)

Since the approximate branch and bound algorithm has high execution time due
to large space exploration of branches, I propose a new iterative multicommodity
solution. In this algorithm, I do not explore all possible branches, but only select
the branch which is more likely to stay in the final solution (best candidate node
selection). I first start by constructing a linear programming (LP) relaxation of
the MINER problem which can be solved in polynomial time providing non-integer
solution for 0 ≤ δi ≤ 1 and 0 ≤ δi,j ≤ 1. The LP relaxation gives a lower bound on
the objective function of MINER, but it can result in many repairs if I repair all
fractional variables. To reduce the number of repairs, I select the best candidate
node from the current non-integer solution to repair and run the discovery phase and
update the cost functions and failure probability distribution accordingly. I iterate
the algorithm until all the demand pairs are satisfied in the network. Therefore,
the iterative multicommodity solution, works the same as a branch and bound
technique except that, at each iteration of the algorithm I only select one of the
branches and do not explore other possible branches. At each iteration of the
algorithm, I repair the node or the edge which contributes the maximum flow. In
case of ties, I choose the network element with maximum failure probability.

2.4.2 Best Candidate Node Selection

The choice of the best candidate node, step (3) in Figure 2.3, is performed based
on a centrality ranking, where I use a new notion of centrality which generalizes
the classic concept of betweenness centrality, to consider flow routing. Assuming
the total set of paths in the current solution (St), is P ∗ and P ∗ni be the total set of
paths in the current solution (St) that contain ni, then the candidate node, N∗i , is
chosen as follows:

N∗i = argmaxni∈St

∑
p∈P ∗ni

f(p)∑
p∈P ∗ f(p) (2.2)

The numerator is the total amount of flow which can be satisfied in the current
solution set (St) and passes through ni and the denominator is the total amount
of satisfied flow in the current solution. I also tried a different criterion for
selecting the best candidate node. In particular I tried to select the node with
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maximum failure probability. Extensive simulation analysis shows that in most
scenarios, selecting the node with maximum centrality gives better results and
reduces the cost of repair. Therefore, I choose centrality as the main metric and
whenever this metric is the same for several nodes, I choose the node with maximum
failure probability, argmaxni∈Stζ

v
ni

(t), to reduce unnecessary repairs, where ζv
ni

(t)
represents the estimation of failure probability of node ni, at time t.

2.4.3 Monitoring Nodes

This section describes how monitor nodes probe the surrounding network to
derive more information on the status of the reachable nodes and links. I assume
that at the beginning of the algorithm, a monitor is deployed on each demand
endpoint. Each monitor is able to identify other nodes that are located within a
distance of m-hops, for example by using traceroutes or other probing methods.
Monitors adopt a breadth-first search algorithm to explore the network, and

truncate the visit at m hops. Whenever a monitor determines that a node v is not
able to forward the probe to one of its neighbors w, the monitor marks both the
link (v, w) and the node w as gray as the monitor is not able to assess whether the
failure is located in the node w or in the link (v, w). Note that a monitor node can
only detect its adjacent link failures.

2.4.4 When to Iterate the Optimization

In order to reduce the complexity of the algorithm, when the solution of the
current iteration of the approximate does not change after discovery phase, I
propose the Heuristic trigger for solution update. Assuming S∗ is the total set of
nodes/edges in the gray area and S(t) is the total set of gray nodes/edges which
have to be repaired to satisfy the demands in the current iteration of the algorithm,
it is possible that after running the discovery phase of the algorithm the next
solution set S(t+ 1) remains the same and therefore I do not need to iterate the
optimization.

Heuristic trigger for solution update 1 Before running the discovery phase,
if the cost function for the current solution S(t) was X, and it changes to X ′ after
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m hops discovery, and the cost function of the set outside the current solution
S∗ − S(t) was Y and changes to Y ′ after m hops discovery, then the optimization
needs to run only if X −X ′ < Y − Y ′ because there exists a possibility that there is
a better solution other than the current solution.

2.5 Comparison with Prior Works

In this section, I introduce two prior works, ISP [6] and CeDAR [16] that aim
at recovering the network progressively after large-scale disruption. Since the
state-of-the-art ISP algorithm assumes perfect knowledge of the failed components,
I modify it to work under uncertainty and call it progressive ISP.

2.5.1 Progressive ISP

This section describes progressive ISP which is my extension of the state-of-the-art
iterative split and prune (ISP) [6]. The basic ISP algorithm starts iteratively by
ranking the nodes based on a new centrality metric, called demand based centrality,
and reducing the demands by either pruning or splitting the demand on the best
candidate node. The demand pair which is least likely to be routed elsewhere is
split over the repaired node to break the problem into two smaller sub-problems.
The demand can be pruned once I find a working path that can satisfy a portion of
the demand.
While it has been shown that ISP, in terms of recovery cost, performs very close

to optimal compared to other greedy approaches when full knowledge of the failure
is known, it performs poorly under uncertain failure distributions. See Table 2.1.
Therefore, I adapted the algorithm to accommodate uncertain failures in a gray
area, and iterate at each step to discover the status of gray nodes/edges by putting
monitoring nodes on the repaired nodes. I use an uncertain estimation of failure
distribution in the first iteration of the algorithm and change the length of the
edge eij ∈ E at the nth iteration to l(n)(eij)/cij where l(n)(eij) is the expected
cost of eij based on the estimated probability distribution at the nth iteration
defined in Section 2.4.1.1 (ISR-SRT), and cij is capacity of eij. The edge cost is
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divided by cij to give higher cost to the paths which have smaller capacity. Further,
we put monitoring software on the node which is chosen to split the demand at
each iteration to discover the gray area. However, once the demand splits over a
candidate node, a routing decision is made on the selected node. Therefore, as I
will see in Section 2.6, even with the help of monitoring nodes, progressive ISP
does not perform well in terms of total number of repairs under uncertain failures.
In the remainder of the chapter I use the terms “ progressive ISP ” and “ ISP ”
interchangeably.

2.5.2 CEDAR

Ciavarella et al. [16] propose a polynomial-time heuristic called Centrality based
Damage Assessment and Recovery (CeDAR) that progressively recovers the network
under incomplete knowledge of failure. CeDAR aims at maximizing the total
satisfied flow during the recovery process. At each iteration step of CeDAR, a
limited amount of budget is available to repair nodes/edges and the repairs are
scheduled according to the availability of the resources at each time step. While
my progressive recovery approach and CeDAR differ in the objective function, they
both propose a progressive recovery under incomplete knowledge of failures and
therefore, I compare my result with CeDAR in Section 2.6 in terms of number of
repaired nodes/edges and monitors placed.
At each iteration stage, CeDAR makes a repair decision based on the available

resources and simplifies the problem by reducing the demand according to the
pruning operation. Also, CeDAR updates the current status of the network by
putting a monitor on the repaired node and progressively updates the incomplete
knowledge of the disrupted area. However, CeDAR does not make any assumption
of the probabilistic failure distribution of the disrupted area.

2.6 Evaluation

In this section, I compare ISR algorithms, presented in 2.4, to the modified version
of ISP introduced in Sections 2.5.1. I use different network topologies including
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Figure 2.4: m-hop discovery and disruption variance, (BellCanada, m-hop=2).

Table 2.3: Network characteristics used in the evaluation.

Network Name # of nodes # of edges Average Node degree
BellCanada 48 64 2.62
Deltacom 113 161 2.85
KDL 754 895 2.37

planar and non-planar real topologies taken from the Internet Topology Zoo [1, 5].
Table 5.2 shows the characteristics of the topologies used for the evaluation. In
addition to the real network topologies, I use synthetic Erdos-Renyi graphs with 100
nodes, where I varied the probability of having an edge between any two different
nodes, to investigate the behavior of the algorithms in scenarios of increasing
complexity.
In the following experiments, I consider several scenarios, in which I vary different

aspects, such as the number of demand pairs, the amount of flow demand for each
pair, and the parameters defining the geographical extent of the disrupted area. For
each scenario I randomize the results running 20 different trials, in which, depending
on the scenario, I vary the random selection of source/destination pairs and the
random disruption of network elements. I implement my recovery algorithms in
python and used the Gurobi optimization toolkit, on a 24-core, 2.6 GHz, 32G RAM
cluster [42].
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Figure 2.5: a) The impact of heterogeneous repair cost variation on total cost of
repair, b) Over/under-estimation of the disruption by adding an error between -20
to 25 to the variance (BellCanada, m-hop=2).

2.6.1 m-hop Discovery Impact

In this section, I investigate the impact of the depth of discovery phase on the
performance of the proposed algorithm. I changed the number of discovered hops
for the monitoring nodes from 1 to 5. I used the BellCanada topology with 10
demand pairs and 4 units of flow per demand. The link capacity is set randomly in
the interval [20, 50]. I used heterogeneous repair cost for each node randomly from
a uniform distribution in [0, 10] and for each edge from a uniform distribution in
[0, 20]. I used higher repair cost for edges due to difficulty in locating the failure and
accessibility. From Figure 2.4a, I can see that increasing the number of discovered
hops improves the restoring performance of my algorithms in terms of total repair
cost. I performed similar experiments with different topologies, which I do not show
in this chapter, due to space limitations. These experiments highlighted that the
impact of the parameter m varies significantly with the size of network topology.

2.6.2 Disruption Variation

In this scenario, addressed in Figure 2.4b, I changed the amount of disruption in
the network to evaluate the performance of the algorithms. I used the BellCanada
topology with 5 demand pairs and 4 units of flow per demand pair. The link capacity
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is set randomly in the interval [20, 50]. I used a Gaussian failure distribution and
changed the disruption variance from 10 to 100. On average, 20% of the network is
disrupted when the disruption variance is 10 and increases to 94% when the variance
is 100. Figure 2.4b shows the simulation results for this scenario. I observed that,
the difference from the optimal is higher for small disruption variation, and all the
algorithms perform close to each other when the variance is higher. This is due
to the fact that, as I increase the disruption variation, the total number of repairs
increases until it gets saturated and the whole network gets disrupted. Therefore,
the uncertainty in the gray area has less impact on the restoring performance of
the algorithms because the whole gray area is failed. Furthermore, the number of
necessary and unnecessary repairs is the same for dense disruptions since most of
the nodes in the network are failed in higher disruption variations and the discovery
phase does not help to reduce the number of unnecessary repairs by a large amount.

2.6.3 Heterogeneous Repair Cost

In this scenario, I analyze the impact of heterogeneous repair cost. I considered
BellCanada topology with 5 demand pairs and 5 units of flow per demand pair.
The link capacity is set randomly in the interval [20, 50]. I considered a scenario
where the whole network is disrupted and used heterogeneous repair cost with the
average of 20 derived from a uniform distribution, and changed the variance of cost
from 0 to 20. Figure 2.5a shows the total and necessary repair cost for this scenario.
As shown, my recovery algorithms perform better in terms of total cost of repairs
compared to the state-of-the-art ISP algorithm when the variance of heterogeneity
is higher. Therefore, in the next set of experiments I consider homogeneous repair
cost.

2.6.4 Sensitivity Analysis

In the next set of experiments, I study the sensitivity of the proposed algorithm
with respect to the correctness of the initial failure estimation. I use the BellCanada
topology where the link capacity is set randomly in the interval [20, 50]. The network
disruption is randomly generated according to a Gaussian geographic distribution
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with variance of 50 that destroys 50% of network components on average. I consider
a varying error in the estimate of the disruption extent, and I overestimate/under-
estimate the disruption by adding an error between -20 to 25 to the variance of
the disruption. Figure 2.5b shows the simulation results for this scenario, where an
error of 0 means that the estimate is generated according to the same distribution
that is used to generate the failures. I observe that when I underestimate the
disruption, the algorithms try to route the critical demands through a part of
network, which is more likely to be failed. Overestimating the disruption assumes
that more nodes/edges have been failed than the real disruption and the algorithm
tries to repair a node/edge which was not really destroyed, therefore, there is a
higher number of unnecessary repairs. Furthermore, the number of repairs does not
change beyond a specific overestimation, because with higher disruption variance, I
am assuming that the whole network is disrupted and the Gaussian distribution
does not give much information about the disruption. ISR-BB performs better than
other algorithms in overestimation or perfect estimation scenarios; but its restoring
performance decreases for underestimation scenarios. ISR-MULT is more robust in
underestimation scenarios and in perfect/overestimation scenarios its performance
is close to ISP.

2.6.5 Impact of Accuracy of Estimate in the Initial Probability
Distribution

In this set of experiments, I use the DeltaCom topology with 6 demand pairs
and 5 units of flow per demand pair, where the link capacity is set randomly in
the interval [20, 50]. The network disruption is randomly generated according to
a geographic failure, where 68% of network elements reside inside a circle within
which the network elements fail with a probability of 0.9 and the rest of the network
elements fail with a probability of 0.1. I vary the accuracy of the estimate of the
failure probability from 10% to 90%. For example, if the accuracy measure on the
x-axis is 10, then the assumption on the failure probability is off by 10%, i.e. I
estimate a failure of 0.8 or 0.2 for the network elements within or outside the circle,
respectively. Figure 2.6 shows the number of nodes repaired (Fig 2.6a); number of
edges repaired (Fig 2.6b); and monitors placed (Fig 2.6c) as I decrease the accuracy
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(a) Number of node repairs..
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(b) Number of edge repairs.
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(c) Number of monitors.
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(d) Number of total repairs.

Figure 2.6: Impact of imprecision in the accuracy of the probability of failed nodes
and edges, 50% disruption.

of my assumed probability distribution of failures.

2.6.6 Skew Factor

In this section, I use the DeltaCom topology with 6 demand pairs and 5 units of
flow per demand pair, where the link capacity is set randomly in the interval [20, 50].
The network disruption is randomly generated according to a geographic failure,
where 50% of network elements reside inside a circle within which the network
elements fail with a probability of 0.1 and the rest of the network elements fail with
a probability of 0.9. This allows me to evaluate the impact of the certainty of the
failure on my algorithm. I expect that the higher the certainty I have of the status
of a gray network element, the better the results.
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(a) Number of node repairs.
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(b) Number of edge repairs.
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Figure 2.7: Impact of skew factor in the accuracy of the probability of failed nodes
and edges, 50% disruption.

I then increase the probability of failure inside the circle from 0.1 to 0.9. The skew
factor is 9 in the beginning and decreases to 1 as I increase the failure probability
of the circle. Figure 2.7 shows the number of nodes repaired (Fig 2.7a); number
of edges repaired (Fig 2.7b); and monitors placed (Fig 2.7c) as I increase the
imprecision in my initial the probability distribution of failures.

2.6.7 Trade-off on Demand Loss, Time Complexity, and Num-
ber of Repairs

The recovery problem can be addressed by giving different priority to performance
aspects such as: 1) demand loss, 2) execution time and 3) number of repairs (cost).
These aspects are in conflict with each other; therefore, I study the trade-off among
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them.
In this scenario, addressed in Figure 2.8, I considered the Deltacom topology,

where I set the link capacity randomly in the interval [20, 30]. I compare ISR-SRT
to OPT to determine the amount of demand flow loss in ISR-SRT. I vary the
number of critical demand flows from 1 to 6. Each demand pair has a requirement
of 22 units of flow. The network disruption is randomly generated according to a
Gaussian geographic distribution that causes the disruption of 43% of the network
components on average.
Figure 2.8a shows that ISR-SRT performs a smaller number of necessary repairs

than OPT but a much higher number of total repairs, meaning that ISR-SRT
schedules repairs for nodes that are found to be working. Figure 2.8b also shows
that ISR-SRT does not meet the demand requirements. The percentage of satisfied
demands drops to 75% when the number of demand pairs grows to 6.
The reason for demand loss is due to the fact that ISR-SRT does not consider

potential conflicts among different demands, and the decision on the nodes/links to
be repaired is made separately for every demand pair without considering other
demands of the network. This has two effects. First, it may lead to the wrong
decisions, and therefore increases the number of unnecessary repairs. Second, the
algorithm might make a routing decision in one iteration for a specific demand
pair which turns to be in conflict with another demand pair in the next iteration
and make it impossible for the second demand pair to be satisfied. Therefore, the
repairs that are required to route the second demand pair are not performed due
to the conflict, and the demand is not satisfied. This implies that the number of
necessary repairs would be less w.r.t the optimal solution. I underline that the
other algorithms, namely OPT, ISR-BB and ISR-MULT, repair nodes/edges until
all demand pairs are satisfied. In these algorithms, no routing decision is made
before finding a feasible solution for all demand pairs. For this reason, they never
show a demand loss. Since my goal is to restore all critical services, I do not further
evaluate ISR-SRT. However, due to its low computational complexity, the algorithm
can be used in scenarios where the demand load is low and a short computation
time is required.
In the next experiment I used the same topology, under a larger disruption,

corresponding to 75% of network elements on average. I consider 5 demand pairs, of
17 flow units each. In order to evidence the tradeoff between the number of repairs
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Figure 2.8: Trade-off between number of repairs and demand loss.

and computation time, in Figure 2.9 I vary the gap between the lower bound of the
objective function and the solution of iterative ISR-BB and ISR-MULT algorithms
from 0 to 40%. I recall that by increasing this gap, I decrease the number of
iterations of the optimization algorithms, and therefore I obtain an approximation
of the solution that is farther from the optimal. Nevertheless, the increase in the
gap has the advantage of reducing the computation time remarkably.
Figure 2.9a shows that, when I increase the gap from 0 to 40%, the difference

between the total number of repairs of ISR-MULT with respect to optimal increases
by a factor of 1.6, while this factor is 3.4 for ISR-BB. Furthermore, I observe that
by running the Heuristic trigger for solution update, introduced in Section 2.4.4,
the total execution time on average decreases by a factor of 10.5, while the total
number of repairs increases of only 3.8%. This is mainly due to the fact that most
of the time, after running the first optimization step, the solution is still valid by
using Heuristic 1. I did not include the execution time results for progressive ISP
since its performance has not been optimized to run on multi-core machines.

In the next scenario, I used synthetic Erdos-Renyi non-planar graphs. In an
Erdos-Renyi graph, any two nodes are connected through an edge with probability
p. I considered an Erdos-Renyi topology with 100 nodes where each link has a
capacity of 1,000 units of flow. I set the number of critical demand pairs to 6, of
one unit each. Notice that with this setting of demand flows and capacities, the
problem reduces to establishing connectivity between the endpoints of the demand
pairs. The complexity of the problem increases as I increase the parameter p and
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Figure 2.9: Trade-off between execution time and repairs.
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Figure 2.10: Synthetic Erdos-Renyi topology with 100 nodes.
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Figure 2.11: Increasing demand pairs and flows (BellCanada).
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the graph becomes gradually non planar. I compare the behavior of ISR-MULT,
ISR-BB and progressive ISP with the optimal solution that would be obtained in
the ideal setting of complete knowledge. In ISR-MULT and ISR-BB, I set the gap
between the lower bound of the objective function and the solution of iterative
ISR-BB and ISR-MULT algorithms to 50%. Once the gap is satisfied, I put all
fractional variables in the solution and select a node to repair and continue this
procedure till all critical services are restored. Figure 2.10b shows the execution
time of the approximate solutions with respect to optimal as I increase the value
of p. I observe that, since MINER is NP-Hard, the optimal recovery with full
information has a very high execution time, while if I stop the algorithm when the
objective is within 50% of the lower bound, the number of repairs is still close to
optimal in ISR-MULT and ISR-BB, and the execution time with respect to OPT
reduces by a factor of 200 in ISR-BB and 630 in ISR-MULT.

2.6.8 Increasing Number of Demand Pairs and Amount of Flow

In this section, I investigate the impact of the number of demand pairs and of the
amount of demand flow of each pair, on the number of necessary repairs. I consider
the BellCanada topology, where I set random link capacity with values in the
interval [20, 50]. I increased the number of demand pairs from 1 to 10, where each
demand has a requirement of 10 units of flow. Figure 2.11a shows the simulation
results for this scenario. I used a Gaussian disruption with disruption variance of
20, which destroys around 40% of the network. As I increase the number of demand
pairs, the gap between necessary and unnecessary repairs increases in progressive
ISP, while the number of necessary repairs is still close to optimal. This is mainly
due to the fact that ISP was not designed for uncertain failures. ISR-IBB has the
smallest number of repairs and ISR-MULT’s number of repairs is between ISP and
ISR-IBB.
In the next scenario, I consider the same network topology, and same disruption

parameters. I set the number of critical demand pairs to 5 and increased the
units of flow per demand pair from 2 to 10. Figure 2.11b shows the simulation
results in this scenario for my iterative algorithms and optimal recovery with full
knowledge. I observe that for less than 4 units of flow, ISP performs slightly better
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Table 2.4: Potential Implication of the proposed algorithms.

Algorithm Cons Pros
ISR-
SRT

Demand loss, cannot satisfy all de-
mands

Low complexity, easy to implement. Can be used to
satisfy small critical demands in short time.

ISP High number of unnecessary repairs in
high demand load

Low time complexity compared to ISR-BB and ISR-
MULT, works better than ISR-MULT in low demand
load

ISR-
BB

High time complexity due to large
space exploration

Low number of repairs, best for small topologies. Can
be configured to reduce the execution time with higher
number of repairs

ISR-
MULT

Moderate time complexity, high num-
ber of repairs in smaller traffics (can
be combined with ISP to have advan-
tage of both)

Smaller number of repairs compared to ISP, higher
than ISR-BB. Better restoring performance for large
number of demand flow/pair.

than the ISR-MULT solution in terms of number of necessary repairs. However, as
I increase the amount of flows per pair, ISR-MULT and ISR-BB perform better
mainly because ISR-MULT and ISR-BB can refine their incorrect decisions due to
lack of knowledge from the beginning of the algorithm while ISP is not able to adjust
its solution after initial wrong decisions. For small number of flows/demand pair,
both ISP and ISR-MULT are close to optimal. I observe that in larger topologies,
ISP performs better than ISR-MULT when the total demand load (sum of all
the demand flow requirements for all the demand pairs) is lower than 40% of the
network capacity. This opens up the opportunity to have a hybrid scenario for low
flow/pair and high flow/pair scenarios where one can get advantage of progressive
ISP under low demand load and the ISR-MULT for higher demand load.
Table 2.4 shows the comparison between progressive ISP, ISR-MULT, ISR-BB

and ISR-SRT. I observed that each of the proposed algorithms has pros and cons,
which makes them suitable for scenarios where I need short execution time, or
higher restoring performance or small number of critical demand pairs.

2.7 Conclusion

While there have been several works on timely network recovery algorithms, far
less progress has been seen in the context of uncertain network failure patterns.
This chapter considers, for the first time, a progressive network recovery algorithm
under uncertainty. I use a multi-stage stochastic optimization technique, called
ISR to guess the best feasible solution set at each iteration using an estimated
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distribution of failure. ISR finds a feasible solution using three different approaches
namely ISR-SRT, ISR-BB and ISR-MULT. From the elements of this solution I
select the one with highest centrality, at each iteration step to repair and exploit
it as a monitor to discover the gray area, until all critical services are restored. I
iterate the process, alternating monitoring and repair activities, until all critical
services are restored. Simulation results show that ISR reduces the total cost
of repair significantly with respect to the state-of-the-art ISP algorithm. I also
observed a configurable choice of trade-off between the demand loss, total number
of repairs and execution time.
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Chapter 3
Controlling Cascading Failures in
Interdependent Networks under
Incomplete Knowledge

Vulnerability due to inter-connectivity of multiple networks has been observed in
many complex networks. Previous works mainly focused on robust network design
and on recovery strategies after sporadic or massive failures in the case of complete
knowledge of failure location. I focus on cascading failures involving the power grid
and its communication network with consequent imprecision in damage assessment.
I tackle the problem of mitigating the ongoing cascading failure and providing a
recovery strategy. I propose a failure mitigation strategy in two steps: 1) Once
a cascading failure is detected, I limit further propagation by re-distributing the
generator and load’s power. 2) I formulate a recovery plan to maximize the total
amount of power delivered to the demand loads during the recovery intervention.
My approach to cope with insufficient knowledge of damage locations is based on
the use of a new algorithm to determine consistent failure sets (CFS). I show that,
given knowledge of the system state before the disruption, the CFS algorithm can
find all consistent sets of unknown failures in polynomial time provided that, each
connected component of the disrupted graph has at least one line whose failure
status is known to the controller [10].
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3.1 Introduction

Today’s critical infrastructures are highly interdependent. Because of the interde-
pendency between different components, perturbations caused by failures, physical
attacks or natural disasters may propagate across different networks. Examples of
such coupled critical infrastructures include the food supply and water systems,
financial transactions and power grids, transportation systems and food supply,
etc. [43,44]. These critical infrastructures are becoming increasingly correlated and
interdependent. Therefore, modeling and understanding the interactions between
multiple networks and designing failure resilient infrastructures is crucial for the
reliability and availability of many applications and services.
One of the most critical infrastructures in our everyday lives is the power grid.

Large-scale blackouts in the power grid due to propagating failures, natural disas-
ters or malicious attacks can severely affect the operation of other interdependent
critical infrastructures and cause catastrophic economic and social disruptions.
In September 2003, a large cascading blackout, in Italy, led to the shortage of
6400 MW of power, which caused a complete system collapse [3]. A similar event
occurred the same year in the Northeast of the United States, leading to over 50
million people losing power for several days. The cascade lasted approximately
for four hours, a time sufficient for enabling countermeasures which could have
mitigated and limited the blackout propagation. This highlights the necessity of a
coherent power control strategy that allows prompt intervention to mitigate or stop
the failure propagation. Furthermore, it is crucial to have a strategic recovery plan
that ensures effective use of the available resources during the recovery process.
Despite considerable amount of research in the past few decades leading to major

improvements in the reliability of communication and power networks, most of the
research focused on the recovery of a single network [6–9,45]. Unlike previous work,
I jointly address the following three challenges:

• Providing a realistic model of cascading failures in interdependent networks
which takes into account the peculiarity of both the communication network
and the power grid, and overcomes the limitations of the simplified epidemic
models which cannot represent real infrastructures [46, 47].
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• Modeling lack of knowledge in failure localization, by considering the potential
uncertainty due to failures in the monitoring systems, which may hamper the
use of appropriate countermeasures to prevent a cascading failure or recover
network services.

• Progressively restoring the network after a large-scale disruption or a cascading
failure in multiple stages, within the limits of recovery resources (time, cost,
human personnel).

I make the following contributions to address the above challenges:

• To cope with insufficient knowledge of failure locations, I propose a new
Consistent Failure Set (CFS) algorithm to determine all failure scenarios,
namely the sets of components whose failure is consistent with the observations.
CFS is used to determine local monitoring interventions that allow the
identification of the state of all network components.

• I tackle the problem of mitigating an ongoing cascade (first phase) by formu-
lating a minimum cost flow assignment (Min-CFA) as a linear programming
optimization problem. Min-CFA aims at finding a DC power flow setting
that stops the cascading failure with minimum change in power generation
and satisfied demand.

• I formulate a progressive recovery problem (second phase) to maximize the
satisfied demands (Max-R) over multiple consecutive recovery interventions
based on the available recovery resources at each stage. I show that Max-R is
NP-hard, hence I propose two heuristic recovery strategies: 1) Max-R-Greedy,
as a baseline algorithm, and 2) Max-R-Backward, which consider different
time spans in scheduling the recovery interventions.

• I perform an extensive experimental evaluation, considering a real network
scenario of interdependent power grid and communication network, under
different interdependency models. The experiments highlight the efficiency
of the proposed cascade prevention algorithm. For example, in a scenario
where 60% of the lines of the power grid has failed, the adoption of Min-CFA
stops the propagation with 54% of served load, while without intervention,
the entire system would fail. In the same scenario, the proposed backward
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recovery approach Max-R-Backward performs full recovery, serving on average
20% more accumulative load than the baseline algorithm Max-R-Greedy.

3.2 Related Work

The existing works on cascading failures in interdependent networks, of interest to
my approach, can be broadly classified into two categories: 1) those, that study the
interaction through percolation theory and stochastic analysis [46–49], 2) studies
that try to identify the most vulnerable nodes [34, 50], and aim at finding the root
cause of failures and identify performance degradation [12,51,52].
The approaches of the first category rely on prior knowledge of the probabilistic

model of failure propagation, which is hard to obtain. In addition, real systems
usually have a deterministic failure propagation. For example, if a power line fails,
a certain number of communication routers will certainly stop working.
Concerning the works of the second category, I underline that finding the root

cause of the propagating failure is key to the design of failure-resilient systems, but
does not provide a mitigation solution.
Another line of research addresses the problem of cascading failure in the power

grid and studies the peculiarity of the propagation across power lines. Cascading
failures in power grids can be due to a permanent failure, e.g. a tree falls on a
transmission line etc., or to a temporary failure, e.g. a temporary short circuit in a
transmission line. When a short circuit happens in a transmission line, a protective
overcurrent relay sends a “trip” signal to the breakers and the breakers set open.
Then the relay attempts to re-close the breaker a few times. In case of a permanent
failure, auto-reclosing fails and the breaker stays open circuit. After a line fails in
the system, the power re-distributes according to Kirchhoff’s and Ohm’s laws. This
can cause the overload of other lines, trigger new failures, spreading over the entire
network.
Unlike the approach proposed in [53], that re-distributes the power flow evenly

over all transmission lines, I use the DC power flow model [54, 55]. Notice that
this model is widely used in studies of cascading failures in power grids and is
acknowledged to be a good approximation of the AC power flow model.
The operation and reliability of today’s power grid is highly dependent on the
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operation of the communication network that provides the necessary information
needed by the Supervisory Control and Data Acquisition\Energy Management
System (SCADA\EMS) and more recently, the Wide-Area Monitoring, Protection,
and Control (WAMPAC) system to respond to emergency situations. The required
data is measured and gathered at the substations from the Intelligent Electronic
Devices (IEDs), fault recorders, breaker status monitors, and Phasor Measurement
Units (PMUs) [56,57]. While substation automation is increasing the intelligence
and autonomy of local protection units, it is facilitating the trend of centralized
wide-area protection popularly called the Remedial Action Scheme (RAS) or the
Special Protection Scheme (SPS). In the latter, data is communicated to a central-
ized location, which can initiate corrective actions such as generation re-dispatch or
load shedding to remote locations. A nice description can be found in [58] and [59]
and references therein. The security of such centralized control systems is itself an
important challenge on the reliability of the power grids (e.g. a compromised RAS
can send an anomalous load shedding signal to disrupt the power grid) [60–63].
Concerning the problem of restoring network functionalities, previous work only

considers one homogeneous network [6–9,45]. The proposed recovery approach in
this chapter, takes inspiration from the works in [7, 8, 45] and aims at restoring
the functionality of multiple interdependent networks in a progressive manner,
depending on resource and incremental knowledge availability. The proposed recov-
ery approach represents a step ahead with respect to these previous contributions
in that it deals with heterogeneous interdependent networks, and includes a run-
time feedback control of the flow during the recovery process. To the best of
my knowledge, the problem of jointly mitigating and recovering from cascading
failures, during the transient regime of the propagation process, was never studied
extensively before as I do in the present work. I address such a problem with
particular focus on failures in the power grid and the interdependent communication
network.

3.3 Network Model and Background

I model the interdependency between the power grid and the communication
system for which some failures are detected while the propagation is still in progress.
I propose a mitigation strategy to minimize further cascades and a recovery plan

43



p7

p1

p2

p3

p5

c4

p6

c2

c1

Power Grid

Communication Network

Failure

Uncontrollable nodes

Failure

Losing power

Uncontrollable

p4

p8

c3

Control 
Center

Figure 3.1: Interdependency model between a power grid and a communication
network.

to entirely restore the power grid functionality, while maximizing the accumulative
amount of delivered power during multiple stages of progressive recovery. My
approach can be extended to the use of other measures related to the operation of
the grid such as the total number of working power lines, etc. Table 5.1 shows the
notation used in this chapter.

3.3.1 Notation

The power and communication networks are modeled as undirected graphs
Gp = (Vp, Ep) and Gc = (Vc, Ec), respectively. Each node i in the power grid is
monitored by several sensors deployed nearby. The monitoring data is then sent
to the node of the communication network which hosts the control functionalities
related to node i of the power grid. In addition, control commands are sent to
the dependent communication node for generator re-dispatch or load shedding. I
acknowledge that several other emergency actions could be taken (e.g. system
separation, dynamic braking, fast valving, etc.), which are not considered here.
The set of nodes Vp of the power grid is composed by three disjoint sets of generators
G where the power is generated, loads L where the power is consumed, and junctions
J where power flows by, with Vp = G ∪ J ∪ L.
As node failures are less likely [64], I hereby assume that initial failures only occur

in power lines (Ep). A node in the power grid is considered failed if it is not able
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Table 3.1: Summary of notations.

Notation Explanation
Gp = (Vp, Ep) undirected graph modeling the power grid. Vp is the set

of nodes and Ep is the set of links
Gc = (Vc, Ec) undirected graph modeling the communication network.

Vc is the set of nodes and Ec is the set of links
G ⊂ Vp set of generator nodes Gi where power is generated
L ⊂ Vp set of load nodes Li where the power is consumed
J ⊂ Vp set of junction nodes Ji where the power just flows
EB,t

p ⊆ Ep set of broken (red) edges
EU,t

p ⊆ Ep set of unknown status (grey) edges
EW,t

p ⊆ Ep set of working (green) edges
F t

ij power flow in line (ij) at time t
θt

i voltage angle of node i at time t
xij series reactance of line (ij)
P t

i power generated/consumed at node i at time t
Y t nodal admittance matrix at time t
wGi cost of increasing the power in generator Gi

wLi cost of shedding the power of load Li

Pmax
Gi

maximum power that can be generated in Gi

P demand
Lj

demand load at Lj

Fmax
ij maximum capacity of the line (ij)
ER

k set of restored edges at stage k
δ(ij),k decision to repair (ij) ∈ EB,t

p at the kth stage
rij resources needed for repairing (ij)
Rk available resource at stage k of the recovery
αi a constant factor showing the reduction of the new power

distribution in node i, where 0 ≤ αi ≤ 1.

to deliver the required power to the loads. Further, I consider the interdependency
between the power grid and the communication network such that (i) failures in
the communication network lead to lack of information and controllability of power
grid in the control center, and (ii) failures in the power grid can cause further
failures in the communication system due to lack of power. The edges in the power
grid graph Gp can be in three different states: 1) the set EB,t

p ⊆ Ep is the set of
broken edges (hereby denoted as red edges) at time t 1; 2) the set EU,t

p ⊆ Ep is
1Notice that in order to be able to assess an edge failure, the edge must be connected to a

working communication node in Gc. The working communication node provides the failure status
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Figure 3.2: Three interdependency model between a power grid and a communica-
tion network: a) One-way, 2) Location-based and 3) Random.

the set of edges with unknown status (denoted as grey edges) at time t; 3) the set
EW,t

p ⊆ Ep is the set of working edges (denoted as green edges) at time t.

3.3.2 Interdependency Model

To clarify the interdependency model between the communication network and
the power grid, consider the example shown in Figure 3.1. The figure shows the
interdependency model between a communication network with 4 nodes {c1, .., c4},
and a power grid with 8 nodes {p1, ..., p8}. The red arrows show the interdependency
between the two networks. For example, c1 controls three power nodes {p1, p2, p3}
and gets power from p3. Now consider a failure in one of the communication nodes
c1. In this case three power grid nodes {p1, p2, p3} become uncontrollable as the
controller cannot send the power adjustment control commands to them. Next,
consider a failure in a node in the power grid p8. In this case, the communication
node c4 that gets power from p8 loses power and consequently the dependent
power grid node p7 becomes uncontrollable. In this work, I consider three types of
interdependency models between the communication network and the power grid:
the one-way interdependency model (Fig. 3.2a); the location-based interdependency
model (Fig. 3.2b); the random interdependency model (Fig. 3.2c).
In the one-way interdependency model I assume the power lines are monitored

and controlled by the closest communication node, while if a grid node fails, the

of the edge to the central controller and can send power adjustment commands to the connected
loads or generators.
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communication nodes get backup power from an external source (e.g., battery).
This is the case for many telecommunication deployments with battery backup. In
the one-way interdependency model, failures in the power grid will not cascade
in the communication network. However, the disruption in the communication
network is observed as lack of knowledge and uncontrollability in the power grid.
As in the one-way model, in the location-based interdependency model, each

power line is monitored and controlled by the closest communication node. Never-
theless, in the location-based model I assume that each node in the communication
network gets power from the closest node in the power grid.
Both in the one-way and location-based interdependency models, the communi-

cation network and power grid are divided into dependent regions and the failure
in one region does not cascade or affect other nodes in a different region.
In the random interdependency model, I assume each power line is monitored and

controlled by a random communication node and each communication node gets
power from a random substation in the power grid. In the random interdependency
model, the failure in one node may cascade and spread over the entire network.
Notice that most prior works on the interdependency between the power grid and

the communication network use a random interdependency model (see examples
in [47, 65–67]) and focus on the ping-pong failures from the power grid to the
communication network and vice versa.
While a random interdependency model is easy to analyze and simulate on

synthetic graphs, it fails to capture most real network topologies. Nevertheless,
I include this model in my analysis for the sake of completeness in providing
comparisons with previous work and because I consider this as a stress-test due to
its potentiality to produce larger cascades.
By comparing the experiments conducted on the random interdependency model

with the ones using location-based and one-way interdependency models, in Sec-
tion 3.6.1 I will show that the extent of the cascading failure phenomenon is mostly
related to the lack of controllability consequent to failures in the communication
network.
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3.3.3 DC Power Flow Model

I model the cascading failure in a power system using a DC load flow model [54].
Let F t

ij be the power flow in line (ij) at time t, xt
ij be the series reactance of line

(ij) and θt
i and θt

j be the voltage angles of node i and j, at time t2. The DC power
flow model provides a linear relationship between the active power flowing through
the lines and the power generated/consumed in the nodes, which can be formulated
as follows.

F t
ij =

θt
i − θt

j

xt
ij

, (3.1)

The power flow of node i can be found by summing up the power flows of all its
adjacent power lines:

P t
i =

∑
j

F t
ij (3.2)

I can re-write the power flow model as a linear system of equations as follows:

P t = Y tθt, (3.3)

where Y t is nodal admittance matrix at time t, yt
ij = − 1

xtij
for i 6= j, and yt

ii = ∑
k

1
xt
ik

[68]. Once events like over-current are detected in a transmission line (ij), a
protective relay trips a circuit breaker (xij = ∞) and the power is redistributed
according to the DC model. In particular, if the current flow exceeds the maximum
threshold on another line (i′j′), in a cascading manner, the transmission line (i′j′)
may also trip.
Notice that in order to determine the power flowing through each line after one

or more failures, I need to solve the system of equations 3.1, which requires the
solution of Equation 3.3 to obtain the values of the vector θt, for each connected
component of the power grid graph.

Remark 1 [69] The system of equations (3.3) has a feasible solution for each
connected component of the power graph.

Discussion on remark 1 Let us consider a unique connected component. The
nodal admittance matrix Y of a connected graph with n nodes has always rank

2Notice that the reactance xt
ij of line (i, j) varies with t as a consequence of failures or recovery

events.
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(n− 1) because one can construct a graphic matroid where the nodal admittance
matrix is a weighted incident matrix. It is known that the rank of a weighted
incident matrix is equal to the rank of any basis (tree) in the graph, which is
(n− 1) [69,70]. To make this equation solvable, one of the equations is removed
and the corresponding node can be chosen as a reference node. Without loss of
generality, the removal of the first equation implies θ0 = 0 and the other n−1 values
of the vector θ can be calculated inverting the system of equations 3.3 reduced
after the removal of the first equation, according to the technique in [71,72]. The
reduced admittance matrix has full rank and thus invertible. If instead the power
grid graph has c connected components due to the disruption of several lines, then
the admittance matrix will have rank n− c and each component must be addressed
by means of the same technique. Let Y ′t be the admittance matrix of a connected
component, and θ′t its phasor vector, let also P ′t be its power vector, at time t.
Then the power flow system of equations of the considered connected component is
P ′t = Y ′tθ′t, which can be solved independently of the other connected components,
in the way described for the case of a unique connected component, with the removal
of one equation and the introduction of a reference phasor vector, as described
in [71,72]. Therefore, the DC power flow model for each connected component of
the graph has a feasible solution.

3.4 Cascade Mitigation and Network Recovery

In this section, I address the problem of cascading failure mitigation and related
recovery process in an interdependent network formed by a power grid and a
communication network. Figure 3.3 illustrates the proposed two-phase approach.
As described in the figure, whenever a new failure event shows up, a preliminary
monitoring activity is performed to localize the failure sites. After the failure
assessment it follows a first phase in which further cascades are mitigated or
prevented by means of a combination of load shedding and adjustment of the
generated power. Once the cascade is stopped, a progressive recovery activity
follows, using either a greedy or backward approach. Recovery is performed in
multiple stages according to resource availability. After the system is recovered,
the monitoring activity restarts, until new failures occur.
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3.4.0.1 Cascade Mitigation

Once I detect an outage of a transmission line, I readjust power and load according
to the optimization problem described in the following.
For clarity of presentation, I hereby assume that the power grid is formed by a

unique connected component. Notice that in the presence of multiple connected
component, all the following techniques are still valid, when applied to each con-
nected component, independently. The Minimum Cost Flow Assignment (Min-CFA)
optimization problem minimizes the total cost of reducing the load or generator’s
power. Let wGi be the weighted cost of reducing the power in generator Gi and wLi

be the weighted cost of decreasing the power of load Li. The Min-CFA problem to
prevent the cascading failures can be formulated as follows:

minimize
∑

Gi∈G,Lj∈L

wGi(P 0
Gi
− P t

Gi
)− wLj(P t

Lj
− P 0

Lj
)

subject to 0 6 P t
Gi

6 P 0
Gi
, ∀Gi ∈ G (3.4a)

0 6 P t
Lj

6 P 0
Lj
, ∀Lj ∈ L (3.4b)

− Fmax
ij 6 F t

ij 6 Fmax
ij , ∀(ij) ∈ Et

p (3.4c)∑
Gi∈G

P t
Gi

+
∑

Lj∈L

P t
Lj

= 0 (3.4d)

P t
Gi

=
∑

j:(Gi,j)∈EtP

F t
ij, ∀Gi ∈ G (3.4e)

− P t
Li

=
∑

j:(Li,j)∈EtP

F t
ij, ∀Li ∈ L (3.4f)

P t = Y tθt (3.4g)

F t
ij =

(θt
i − θt

j)
xij

, ∀(ij) ∈ Et
p (3.4h)

The decision variables in Min-CFA are the continuous values of power in the
generators (P t

Gi
) and loads (P t

Lj
).

Constraint 3.4a indicates that the power generated at each generator at time
t cannot exceed the initial power observed at time 0. In case of full knowledge
of the location of failures, I could have a more relaxed constraint to increase the
power at some of the generators without violating a maximum threshold. However,
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Figure 3.3: Recovery Process: 1) Cascade mitigation phase, and 2) Recovery phase.

under uncertain failure I reduce my solution space to decrease the possibility of
consequent cascades due to imperfect knowledge. Constraint 3.4b shows that the
reduced load cannot exceed the demand. Constraint 3.4c shows that the power
flowing through each line cannot exceed the maximum capacity of the line (thermal
constraint). Constraint 3.4d is the power conservation condition, i.e. the total power
generated in the generators should be equal to the total power consumed in the loads.
Constraints 3.4e and 3.4f show that the total power generated/consumed at each
node should be equal to the total power flowing through its edges. Constraints 3.4g
and 3.4h reflect the DC power flow model, to be solved according to Remark 1 [72].
I next provide the sufficient condition for each connected component of the power
grid, to ensure that the solution of the power re-distribution model under uncertain
knowledge of the failure does not increase the power flowing through any line in the
system, making it exceed the thermal threshold given by constraint 3.4c. Suppose
that in the new power assignment for each node i, Pi is reduced by a factor αi, i.e.
P t

i = αiP
0
i , for i = 0, . . . , n− 1, where 0 ≤ αi ≤ 1. Without loss of generality, let

the reference voltage angle be at node 0 (θ0 = 0). Also, using the DC power flow
model, the voltage angles at each node is calculated as follows:

θi =
n−1∑
m=1

kimPm, with kim ≥ 0, (3.5)

where n is the number of nodes in the power grid, and kim reflects impedance
values, that are always non negative [71,72].

Let α− , min{αi : i = 1, ..., n − 1} and α+ , max{αi : i = 1, ..., n − 1}. A
sufficient condition for not having cascade propagation is the following.
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Theorem 2 Sufficient condition for no additional cascading failures in Min-CFA
problem is as follows:

1− α−
1− α+ ≤

∑
m:Gm∈G(kim − kjm)Pm∑

m:Lm∈L(kim − kjm)(−Pm) ∀(ij) ∈ Et
p (3.6)

Proof of Theorem 2 Without loss of generality, I assume Fij ≥ 0, otherwise I
can simply interchange i and j index. In order to check whether the new power
flow Fij,new provided by my control approach is not larger than the previous flow
Fij, I need to check if Fij ≥ Fij,new, which is equivalent to check if (θi − θj) ≥
(θi,new − θj,new). Note that the new and previous voltage angles at each node is
computed as follows:

θi =
n−1∑
m=1

kimPm, where kim ≥ 0

θi,new =
n−1∑
m=1

kimαmPm, where 0 ≤ αm ≤ 1, kim ≥ 0

Therefore, I have to verify the following inequality:

(
n−1∑
m=1

kimPm −
n−1∑
m=1

kjmPm) ≥ (
n−1∑
m=1

kimαmPm −
n−1∑
m=1

kjmαmPm)

To check if the flow in Fij does not increase after the power flow adjustment, I
need to verify the following inequality, for each edge (i, j) ∈ Et

p:

∑
m:Gm∈G

(kim − kjm)Pm(1− αm) ≥
∑

m:Lm∈L

(kim − kjm)Pm(αm − 1) (3.7)

Now I show that if condition 3.6 is satisfied for every flow, I can make sure that the
new power flow at each line is no more than the power flow without any adjustment
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of generator or load’s power. We have:
∑

m:Gm∈G

(kim − kjm)Pm(1− αm) ≥
∑

m:Gm∈G

(kim − kjm)Pm(1− α+) =

(1− α+)
∑

m:Gm∈G

(kim − kjm)Pm ≥

(1− α−)
∑

m:Lm∈L

(kim − kjm)(−Pm) =
∑

m:Lm∈L

(kim − kjm)(−Pm)(1− α−) ≥
∑

m:Lm∈L

(kim − kjm)(−Pm)(1− αm)

Therefore, if equation 3.6 holds, the inequality 3.7 is also verified, which implies
that the new power set at each line does not exceed the previous value.

3.4.0.2 Recovery Phase

In this paragraph I address the problem of scheduling recovery interventions in
order to maximize the total accumulative flow absorbed by the loads during K
stages of recovery. The number of stages can be set according to the assumption
that at least one edge can be repaired at each stage. Therefore K can be set equal
to the number of broken edges. I hereafter refer to the multiple stages of progressive
recovery shortly with the word stages.
Let δ(ij),k be a binary variable representing the decision to repair edge (i, j) at

time k = 1, . . . , K. Namely, if edge (i, j) is being repaired at time k, δ(ij),k = 1 and
δ(ij),k′ = 0, ∀k′ 6= k. Similarly, if an edge (i, j) had never failed, I set δ(ij),0 = 1
to keep into account that it must not be scheduled for repair. For shortness of
notation I also define the decision matrix ∆k, whose ij-th element corresponds to
the decision δ(ij),k.
The recovery of a broken line (ij) requires rij recovery resources. At each recovery

stage, Rk resources are available for recovery interventions. I assume to have a
budget rollover, so that resources that have not been consumed until the end of
stage k − 1 are available at the k-th recovery stage, and summed up to the Rk
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newly available.
Notice that in my model, the power grid graph at each stage k includes all the

edges repaired according to the repair schedule performed until time k. Hence, I
denote the power absorbed by load Lj at time k by P k

Lj
(∆1, . . . ,∆k), calculated by

means of the iterative solution of problem Min-CFA at stage k.
The maximum recovery (Max-R) optimization problem aims at maximizing the

accumulative delivered power over K recovery stages. The Max-R recovery problem
is formulated as follows:

maximize
K∑

k=1

∑
Lj∈L

P k
Lj

(∆1, . . . ,∆k)

s.t.
k∑

m=1

∑
(ij)∈Ep

δ(ij),m · rij ≤
k∑

m=1
Rm, k = 1, ..., K (3.8a)

k∑
m=0

δ(ij),m ≤ 1, ∀(ij) ∈ Ep, k − 1, . . . , K (3.8b)

δ(ij),k ∈ {0, 1}, ∀(ij) ∈ Ep, k = 1, ..., K (3.8c)

where δ(ij),k is the decision variable to repair (ij) ∈ EB
p at the k-th stage of the

algorithm. Constraint 3.8a indicates that at stage k of the recovery schedule, Rk

new recovery resources become available and resources rollover from the previous
stages so that if some available resources are not used until the k-th stage of the
recovery, they are still available in the following stages. Constraint 3.8b shows that
each broken line can be repaired only in one stage of the recovery schedule.
Notice that Max-R is a combinatorial and nonlinear optimization problem. In

fact, the objective function is the accumulative power flow measured at the loads in
the K steps of execution of the algorithm. I underline that the total delivered power
appearing in the objective function depends on the recovery decisions adopted at
each stage of the recovery schedule. With P k

Lj
(∆1, . . . ,∆k) I denote the power

absorbed by load Lj when the recovery decisions given by the decision matrix ∆m

are made according to the schedule up to step m = 1, . . . , k. Such an optimization
problem is combinatorial and non-linear, in that it requires the solution of the
Min-CFA optimization problem to find ∑P k

Lj
(∆1, . . . ,∆k), since the set of working

lines at stage k changes based on the current and previous decisions of the recovery
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schedule ∆m, for m = 1, . . . , k.
Note that in the recovery phase, I remove the generator’s power reduction

constraint and the generator and load’s power increases gradually until all demand
loads are all satisfied.

Theorem 3 The problem of Max-R is NP-Hard.

Proof of Theorem 3 I prove the NP-hardness of the Max-R problem showing
that it generalizes the Knapsack problem. I recall that the Knapsack problem
considers a set of items I, each item i ∈ I has a size Si and a value Vi > 0. The
problem is to find a subset I ′ ⊆ I such that S(I ′) ≤ S and V (I ′) is maximized,
where S(I ′) = ∑

i∈I′ Si and V (I ′) = ∑
i∈I′ Vi.

In the following I show how I can build, in polynomial time, an instance of a
single stage (K = 1) of Max-R problem whose solution corresponds to the solution
of the generic formulation of the Knapsack problem given above.
Since I consider a single stage of the Max-R problem, I assume R resources are

available to repair all disrupted lines (ij) ∈ EB,t
p . I also assume that I have complete

information about the disrupted lines. Let me consider a set of generators I, each
generator corresponding to an element i ∈ I of the Knapsack problem, producing a
flow equivalent to the value Vi of the element. Each generator i ∈ I is connected
to a unique common load L with a broken line, whose repair cost is equivalent to
the size Si of the corresponding Knapsack element. I also assume that the load L
has a demand of at least the summation of all flows (∑i∈I Vi). I set the recovery
budget of Max-R equal to S, the size of the Knapsack. This instance of Max-R can
be defined in polynomial time starting from any instance of Knapsack. Solving
this instance of Max-R, corresponds to finding a list of links to be recovered with
cost limited by S, such that the flow reaching the common load L is maximized,
which is equivalent to selecting the Knapsack subset I ′ ⊆ I with maximum value,
and bounded size S, which completes the proof that any instance of the Knapsack
problem can be polynomially reduced to the solution of an instance of Max-R,
which implies the NP-hardness of Max-R, showing that Max-R is at least as difficult
as the Knapsack problem.

There exists no polynomial-time solution for general instances of knapsack prob-
lem. Therefore, each stage of Max-R is NP-hard. I also note that the maximum
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recovery problem is a combinatorial optimization and the total flow that each line
can add to the final solution of the problem is unknown in advance and depends on
the recovery schedule of other lines in the previous recovery stages. The marginal
flow that each line can add to the current solution of the problem can be found by
solving the Min-CFA problem introduced in section 3.4.0.1 which itself is a linear
programming optimization.
As Max-R is NP-hard, and due to the broadness of the feasible region of the

problem, which includes all possible permutations of repair interventions, in the fol-
lowing section I propose polynomial heuristic approaches to stop failure propagation
and recover the network under uncertain failure localization.

3.5 Heuristics for Cascade Mitigation and Recovery
under Uncertain Knowledge

In this section, I first apply a linear algebraic approach to increase the incomplete
knowledge of the phasor voltages as much as possible, and then I describe the
consistent failure set approach to detect the status of grey lines. The grey lines, as
described in Section 3.3 are the set of edges whose working status is unknown to the
controller. Then, I describe two heuristic algorithms to solve Max-R. Inspired by
the approach proposed in [45] that finds a progressive recovery schedule in a data
communication network, I first propose a greedy approach with polynomial time
complexity and then propose a polynomial time backward approach that solves a
single stage of the problem and finds the solution for all stages in reverse recovery
scheduling order.

3.5.1 Identifiability of Voltage Phasors

When the network is divided into a known and unknown part I can re-write the
DC power flow equations as follows: Yknown

Yunknown

×
 θknown

θunknown

 =
 Pknown

Punknown

 (3.9)
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P2 = 1.5

P3 = -2.0

P1 = 0.5

x12 = 1/3 P21=0.375

(a) All lines working.

P2 = 1.5

P3 = -2.0

P1 = 0.5

x12 = 1/3
P21=1.5

(b) Failure in line (23).

Figure 3.4: An example of a 3-bus network where active power and reactances are
in pu.

Therefore, some of the unknown voltage phasors can be found by solving the
following linear set of equations:

Yknown ×

 θknown

θunknown

 = Pknown (3.10)

LetNull(Yknown) denote the null space of Yknown, i.e., for any vector v ∈ Null(Yknown),
I have Yknown · v = 0 [12].

Theorem 4 [73] For an arbitrary matrix Yknown, let Null(Yknown) represent the
null space of Yknown. Voltage phasor θi is identifiable if and only if ∀v ∈ Null(Yknown)
I have vi = 0.

Therefore, in order to find a set of identifiable voltage phasors, I can first compute
the null space of Yknown and find all indexes with zero values in the null space. The
value of the identifiable voltage phasors can be found by solving the linear system
of equations (3.10).

3.5.2 Finding a Consistent Failure Set (CFS)

In this section, I first consider an illustrative example showing the impact of
incomplete knowledge on the extent of the failure propagation and uncontrollability.
I then propose a Consistent Failure Set (CFS) algorithm to cope with lack of
knowledge.
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Example 1 Consider the network given in Figure 3.4, using the DC power flow
model to calculate the power flows in the lines, where the reference angle is θ1 = 0,
I have: θ0

2

θ0
3

 =
 5 −2
−2 4

−11.5
−2

 =
 0.125
−0.4375

 (3.11)

The power flow through each line is then computed as follows:

F 0
12 = θ0

12
x12

= 3× (0− 0.125) = −0.3750, (3.12)

F 0
13 = θ0

13
x13

= 2× (0− (−0.4375)) = 0.875, (3.13)

F 0
23 = θ0

23
x23

= 2× (0.125− (−0.4375)) = 1.125. (3.14)

If the power line 23 gets disrupted as in Figure 3.4b, the power redistributes
according to DC power flow model, where F 1

21 = 1.5 and F 1
13 = 2. Suppose that

the maximum power that each line can tolerate is Fmax
ij = 1.3. Therefore, after the

first line gets disrupted, the whole system collapses and the demand load cannot be
satisfied. However, if I know the exact location of the failure, the RAS/SPS may
reduce the generator’s power to satisfy a degraded quality of service. One trivial
solution of Min-CFA to this problem is to reduce the second generator’s power to
P 1

2 = 0.8 and reduce the load to P 1
3 = −1.3 without violating the maximum power

on each line. However, under the uncertainty of the exact location of the failure,
the controller fails to make appropriate decisions and the whole network collapses.

In order to have a correct damage assessment, and solve the uncertainty in the
grey area I propose the following CFS algorithm. I assume that there is no local
load shedding. Hence, the powers at the generators and loads are only controlled
through the central controller unit, so the power generated/consumed in each
generator/load or junction is known.
To explain my algorithm, I first consider the nodes that have the smallest number

of grey links.

Lemma 1 In the power grid graph Gp, if there exists a node v ∈ Vp which has
only one grey incident link (v, w) ∈ Et

p, the exact status of the grey link (v, w) is
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identifiable.

Proof of Lemma 1 The exact status of a single grey link incident to a node v can
be determined using the power flow Equation 3.2. In fact, under the assumption of
only centralized load shedding, the power generated/consumed at node v is known
from the previous stage. Hence, the power flowing through the grey line can be
found by solving the power flow Equation 3.2 where the only unknown variable is
F t

vw.

Lemma 2 If the grey area does not contain a cycle and there exists at least one
edge in the power grid graph Gp whose status is known, the exact status of all grey
edges can be found in O(|EU,t

p |).

Proof of Lemma 2 If the grey area does not contain any cycles, it forms a tree.
Hence there exists at least one node that has only one grey incident link whose
statuse can be identified according to lemma 1. This procedure can be repeated to
find the status of all grey links in O(|EU,t

p |).

Therefore, I can find the state of the network for all grey links, which are not inside
a cycle. In the presence of a grey cycle, the CFS algorithm breaks the cycle by
selecting one arbitrary link within the cycle, and considering the two potential
statuses, broken or working. CFS then finds one or multiple consistent failure
sets, namely sets of status assignments to each grey link of the cycle, which are
consistent with the available observations.
If the consistent failure set algorithm finds multiple solutions, CFS provides local

inspection to determine the actual failure set.
The CFS algorithm is described in Algorithm 2. In more details, for the case

study of a graph Gp which has one or multiple cycles in its grey area, CFS starts
by considering a case in which there are no grey link cycles (line 1), finding the
status of grey links by considering them iteratively, starting from the nodes with
only one incident grey link, according to the function CFS-Cycle-Free, described
in Algorithm 3.
If all nodes have at least two grey links in the graph, i.e. there exists a cycle in

the grey area (line 2), CFS picks an arbitrary edge within a cycle (line 3).
The algorithm tries to solve the unknown status of the grey edges by assuming

one edge at each cycle to be working or not working according to a decision
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tree, henceforth generating 2C possible link status combinations. CFS then uses
Algorithm 3 to determine which combination is consistent with the observation
(line 4) and provides the corresponding status of the remaining links of the cycles.
In cases where there exists multiple consistent failure sets, CFS requires a local

inspection of a link which appears with a different status in any two solutions to
determine which solution is consistent with the result of the local inspection.

Observation 1 Assuming the grey area becomes a tree by removing C edges, CFS
algorithm runs in O(2C |EU,t

p |).

Proof of Observation 1 The status of all grey links which are not within a cycle
in O(|EU,t

p |) is found according to Lemma 2.
If there are cycles of grey links, I break the cycles by selecting C links. By making

an assumption on the status of each of these C links CFS builds a decision tree,
where at each node it assumes whether each link is either working or broken. Such
a decision tree will have 2C leaves corresponding to different failure sets whose
consistency is validated separately by means of Algorithm 2, which will also provide
the state of the remaining grey links in the broken cycles, in the case of consistency.
Note that the consistent failure set is not unique and sometimes I may end up

having multiple failure sets, which are all consistent with my partial knowledge.

Example 2 Figure 3.5 shows an example of a network with 6 grey links and shows
different steps of the CFS algorithm. In the first step, I evaluate the status of all
grey links, which are the unique grey incident links of a node and therefore are not
part of a cycle.
In the second step, I evaluate the status of grey links forming a cycle. For link

(23) I build a decision tree to remove the existing cycle. The decision tree rooted
in the link (23) will have two branches, corresponding to the two potential different
state of link (23), working or not working. Assuming edge (23) ∈ EB,t

p was broken,
I do not find a consistent feasible solution, which lead me to evaluate the other
branch, assuming that (23) is working, namely (23) ∈ EW,t

p . The last graph shows
a consistent failure set of broken and working edges. In this example, I derived
only one consistent failure set. If I had multiple consistent failure sets, I would
have performed a local inspection of the edges whose failure status is different in
the possible consistent solutions, and picked the solution consistent with the local
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Figure 3.5: An example of a 6-bus network with 6 grey edges and different steps
of CFS algorithm.

Algorithm 2: Consistent Failure Set (CFS) algorithm.
Data: A set of grey lines (ij) ∈ EU,t

p whose failure status is unknown, the
graph of the network Gp = (V t

p , E
t
p), the power generated at each

generator PGi ∀Gi ∈ V t
p , the power consumed at each load PLi ∀Li ∈ V t

p

Result: The status of edges in the grey area (ij) ∈ EU,t
p , which can be failed or

working.
1: C = Number of edges in EU,t

p that need to be removed to make the
grey area cycle-free

if C = 0 then
2:

run CFS-Cycle-Free(EU,t
p , Gp, PGi , PLi). if C > 0 then

3:
else
pick an edge at each cycle to generate a cycle-free grey area

4: for all 2C combination of the chosen edges at each cycle, run
CFS-Cycle-Free(EU,t

p , Gp, PGi , PLi) to find a consistent failure set
return EB,t

p , EW,t
p

inspection.

Remark 2 (Discussion on the number of grey edges.) Table 3.2 shows the
average number of grey edges which are part of a cycle in the graph of the Italian
power grid network [44,68,74] when the size of the disrupted communication network
(GARR) increases from 10% to 90% for 100 different random selection of disrupted
communication nodes. Assuming all possible failures within a cycle are consistent
with known information, I only need a maximum of 10% local inspection of the grey
edges.
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Algorithm 3: CFS-Cycle-Free
1 Function CFS-Cycle-Free (EU,t

p , Gp, PGi , PLi)
2 greys = argmin|(nij) ∈ EU,t

p |;
3 while greys = 1 do
4 Select a node i ∈ V t

p with one grey neighbor
greys = argmin|(ij) ∈ EU,t

p | ;
5 detect whether (ij) ∈ EU,t

p is working or not using equation 3.2.;
6 if there exists no solution from equation 3.2 then
7 return INCONSISTENT;
8 break ;
9 if (ij) ∈ EU,t

p is working then
10 EW,t

p = EW,t
p ∪ (ij) and EU,t

p = EU,t
p \ (ij) ;

11 else
12 EB,t

p = EB,t
p ∪ (ij) and EU,t

p = EU,t
p \ (ij);

13 return CONSISTENT, EB,t
p , EW,t

p ;

Table 3.2: Average number of local inspections needed as the size of the grey area
increases in the Italian power grid network.

Percentage of dis-
rupted monitors

Average number of grey
edges in the Italian power
grid

Average # of grey edges
within a cycle

10 25.25 3.74
20 62.49 7.15
30 92.06 10.04
40 124.16 13.35
50 157.6 16.84
60 193.29 21.52
70 227.59 26.95
80 265.49 32.71
90 303.5 40.06

3.5.3 Max-R-Greedy

In this paragraph I introduce the baseline heuristic Max-R-Greedy to solve the
Max-R problem. I recall that the objective function of the problem Max-R is the
total accumulative flow in K stages of recovery. Max-R-Greedy greedily selects the
links to repair based on the marginal value of their contribution to the accumulative
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Algorithm 4: Max-R-Greedy recovery algorithm.
Data: A set of failed lines (ij) ∈ EB,t

p , A set of demand loads Lj ∈ Vp and
generators Gi ∈ Vp, limit on the tolerable power of each transmission
line Fmax

ij , the nodal admittance matrix B, the required resources to
repair each line rij

Result: The recovery schedule of the failed transmission lines δ(ij),k
1: R = 0 for k ∈ {1, ..., K} do
2:

R = R +Rk while ∃(ij) ∈ EB,t
p that rij 6 R do

3:
Select an un-repaired line (ij)∗ = argmaxij

F(ij)
r(ij)

4: δ(ij)∗,k = 1
5: R = R− r(ij)∗ return δ(ij)∗,k

flow.
At each stage k, Max-R-Greedy repairs the transmission lines that add the

maximum to the total delivered power over the required resource, i.e. it repairs
the line arg max(ij)∈EB,kp

(Fij/rij) among the broken ones, until the total available
resources for stage k are used. Algorithm 4 shows different stages of the Max-R-
Greedy algorithm.
More in details, the algorithm works iterating repair interventions through stages.

At each stage k, it first updates the current value of the rollover budget (line
2). Then, until the available budget allows, it selects a new broken link (i, j)∗ for
recovery, based on the marginal contribution to the accumulative flow, with respect
to the repair cost (line 3). Finally it schedules (i, j)∗ for recovery at stage k (line
4) and updates the available recovery resources accordingly (line 5).

3.5.4 Max-R-Backward

As an alternative heuristic to compute a more accurate solution of the Max-R
problem, I use Max-R-Backward. The algorithm finds the recovery schedule in
K stages as a list of K sets Sk, k = 1, . . . , K, of links to be repaired up to stage
k. The algorithms works backward from stage K to stage 1, by considering a
decreasing budget at each stage. It starts by solving a version of the problem which
assumes R = R1 + ...+ RK resources are available (line 3). The solution of this
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Algorithm 5: Max-R-Backward recovery algorithm.
Data: A set of failed lines (ij) ∈ EB,t

p , A set of demand loads Lj ∈ Vp and
generators Gi ∈ Vp, limit on the tolerable power of each transmission
line Fmax

ij , the nodal admittance matrix Y t, the required resources to
repair each line rij

Result: The recovery schedule of the failed transmission lines δ(ij),k
1: solve DC power flow model to find Fij, assuming all lines are working
2: SK+1 = EB

p for k = K downto k = 1 do
3:

R =
k∑

m=1
Rm

4: Sk = Sk+1 while
∑

(ij)∈Sk
rij > R do

5:
Select a line with minimum flow per cost (ij)∗ = argminij

F(ij)
r(ij)

6: δ(ij)∗,k+1 = 1
7: Sk = Sk \ (ij)∗
8: solve DC power flow model to find Fij, assuming (ij) ∈ Sk are working.

return δ(ij)∗,k

execution of the algorithm produces a list of edges to be recovered from the start
until stage K, named SK . Initially, SK is the entire set of broken links EB

p . In
order to calculate the recovery schedule for each stage, the algorithm proceeds by
selecting from SK all the lines that exceed the budget available for the first K − 1
stages, and which contribute the minimum marginal value of flow over cost (line 5)
. The selected lines will be scheduled for recovery at stage K (line 6), and will be
excluded from the recovery schedule of any previous stage (line 7). Before the end
of each stage, the algorithm must solve the DC power flow problem taking account
of the scheduled repairs, to update the values of the flows Fij, for all the links of
Ep (line 8).

This procedure repeats until the repair schedule of all stages is found.

3.6 Evaluation

In this section, I perform an experimental evaluation of my algorithms in a
real network setting. I consider the Italian power grid network, called HVIET,
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shown in Figure 3.6a consisting of 310 nodes, 113 generators and 97 demand
loads. The network has 361 power lines. For the communication network I
use the GARR network, shown in Figure 3.6b consisting of 39 nodes and 50
edges [68, 74]. Transmission lines in the power grid are monitored by several
sensors deployed nearby. Based on the interdependency model, the aggregated
data are then sent to the closest/random communication node and to the control
center. In addition, the control commands for power adjustment are sent to the
closest/random communication node. Therefore, each node in the communication
network might monitor and control several lines and nodes in the power grid. In my
evaluation, I assume the Italian power grid network to be purely inductive (lossless)
with zero reactive injection, so that the DC power flow is actually accurate. I also
note that, since the DC power flow model is an approximation to the AC power
flow, applying my model to a real coupled system, can result in a lower performance.
I implement my cascade prevention and recovery algorithms in Python and used
the Gurobi optimization toolkit [42], on a 120-core, 2.5 GHz, 4TB RAM cluster.

In my experiments I vary the interdependency model and I randomize the results
running 10 different trials with randomized selection of failed transmission lines.
Summary of observations. The key observations are as follows. First, I

observed that the random interdependency model has a larger impact on the
number of disrupted/uncontrollable nodes in the two networks compared to a
one-way and a location-based interdependency model. This is due to the fact that
in one-way and location-based interdependency model, the cascade is limited to
the geographical interdependent regions in the two network while in a random
interdependency model the cascade spreads from any part of the network to the
other parts.
Second, I observed that my cascade prevention approach could still provide service,

though potentially degraded, differently from the case without countermeasures.
Finally, I observed that the backward recovery approach performs better than

the greedy approach. This is due to the fact that the greedy approach does not
consider the correlation between different steps of the recovery approach and makes
a repair decision at each stage independently.
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(a) HVIET. (b) GARR.

Figure 3.6: a) The Italian high-voltage (380 kV) transmission grid (HVIET), and
b) its communication network (GARR).

3.6.1 Impact of Interdependency

I first evaluate the impact of different interdependency models on the extent of
failure propagation within the power grid and the communication network.
I assume the initial failures are in the power grid. In this experiment I gradually

increase the percentage x of randomly failed lines in the power grid and I observe how
the number of uncontrollable power grid nodes and disrupted communication node
varies accordingly. In the first scenario, I connect the HVIET and GARR networks
following the location-based interdependency model described in Section 3.3.2.
Figure 3.7a shows the percentage of uncontrollable nodes in the power grid and
disrupted nodes in the communication network which lose power due to the failures
in the power grid, when the propagation stops naturally. I observe that in a
location-based interdependency model the failure does not spread much and the
percentage of failed power grid nodes and communication nodes is linear with
respect to the initial failures in the power grid.
In the second scenario, I consider the random interdependency model. Figure 3.7b

shows the simulation results for this scenario. As shown, compared to location-
based interdependency model, in a random interdependency model, the failures
spread more in both the power grid and the communication network. This is due
to the fact that in a random interdependency model, the failures are not limited to
geographical interdependent regions and can spread from any part of the network
to the other. Hence, I consider this model as a stress-test for my algorithms.
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Figure 3.7: a) Location-based and b) Random interdependency model in the Italian
power grid (HVIET) and its communication network (GARR).
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Figure 3.8: Total delivered power (pu) versus the percentage of failures on the
monitoring nodes in the Italian power grid network.

3.6.2 Impact of Incomplete Knowledge

In this section, I investigate the impact of incomplete knowledge of the exact
location of failures. Initially, x% of the communication nodes get disrupted. I
consider the one-way interdependency model where the consequences of failures in
the communication network are lack of information and loss of controllability in the
power grid. Figure 3.8 shows the simulation results of this experiments. When 100%
of the communication network and 20% of the power grid is disrupted, the total
delivered power can drop by 10.48 power units (pu). Assuming the maximum unitary
profit of 26.6 e/MW according to [75], the total profit loss, due to uncertainty of
failure location can be as high as 209076 e = 10.48pu× 750MW/pu× 26.6 e/MW

which could be avoided using a detection algorithm and a cascade prevention
approach.
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3.6.3 Preventing the Cascade (Min-CFA)

In this paragraph I evaluate the performance of our cascade prevention approach,
namely the Min-CFA algorithm, with the case in which no cascade countermeasure
is available.
I consider the one-way interdependency model described in Section 3.3.2. I

assume the communication network gets power from an external source in case of a
failure in the power grid. The disruption in the communication network is observed
as lack of knowledge and uncontrollability in the power grid.
The performance metric considered in this experiment is the total delivered

demand power. Similar to [54], I assume all loads have the same priority and give
a high penalty for not being able to satisfy the demand. I assume the weighted
cost of decreasing power of load Lj is 100, i.e. wLj = 100, ∀Lj ∈ L, while the
normalized weighted cost of generators is 1, i.e. wGi = 1, ∀Gi ∈ G.
In the first set of simulations I set the disruption percentage of the power grid

to x = 60% and run Min-CFA to find the optimal flow assignment. Figure 3.9
shows the total delivered power during different time steps of the algorithms with
Min-CFA cascade prevention and without it. As shown in the figure, Min-CFA can
save 54% of the total power that would be delivered if the power grid were not
disrupted. On the other hand, if I do not run a cascade prevention algorithm, the
failed transmission lines lead to more lines failing and this process continues until
the whole system fails.
In the next set of simulations, I use a continuous cascade prevention, meaning

that the decision variable, P t
Lj

in Equation 3.4 can decrease continuously. Then, I
consider a discrete cascade prevention scenario, where the decision variable, P t

Lj

in Equation 3.4 can either be equal to each load’s demand power which should be
satisfied or set to zero (i.e., loads are turned off); and finally, I consider a scenario,
where there is no monitoring technique to reschedule the power flow or avoid the
cascade and the failed transmission lines can trigger multiple cascade.
In this experiment I gradually increase the percentage x of randomly failed lines in

the power grid and observe the total amount of load served. Figure 3.10 shows the
simulation results for the three cases. As shown, the continuous cascade prevention
approach saves more power compared to the discrete power optimization and to
the case without cascade prevention.
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Figure 3.9: Total delivered power (pu) during time when Min-CFA cascade
prevention algorithm is used and without any cascade prevention in the Italian
power grid network.
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Figure 3.10: Total delivered power (pu) versus the percentage of line failures in
the Italian power grid.

Notice that in absence of cascade prevention measures, an initial failure that
disrupts more than 60% of the power grid lines is sufficient to make a black out of
the entire system, due to a full propagation of the failure.

3.6.4 Recovery Phase (Max-R)

In the next set of experiments, I compare the recovery performance of the
proposed heuristics (Max-R-Greedy and Max-R-Backward). Figure 3.11 shows the
total delivered power flow over different stages of progressive recovery intervention,
when using the two algorithms. As shown, the greedy approach does not consider the
correlation between different steps of the recovery approach and tries to maximize
the added flow at each iteration step. On the other hand, the backward algorithm

69



0 100 200 300

Time Steps

0

5

10

15

20

25

30

T
o

ta
l P

o
w

er
 D

el
iv

er
ed

 (
p

u
)

Max-R-Backward

Max-R-Greedy

Figure 3.11: Total delivered power (pu) flow over time for Max-R-Backward and
Max-R-Greedy in the Italian power grid.

Table 3.3: Normalized accumulative delivered power for Max-R-Backward and
Max-R-Greedy approaches.

Recovery Resources Max-R-Backward Max-R-Greedy
1 0.8062 0.6791
2 0.9012 0.8377
6 0.9645 0.9435

solves the problem using all repair resources in the beginning and removes the
repair edges with less profit (Fij/r(ij)) from the schedule of previous stage until all
repair schedules are determined. Therefore, Max-R-Backward performs better than
the Max-R-Greedy approach with larger total area behind the curve in Figure 3.11.
I next increase the number of resources at each stage and study the normalized
accumulative delivered power for the two recovery approaches. Table 3.3 shows the
results of this scenario.

3.7 Conclusion

This chapter studies the problem of mitigating propagating failures and performing
progressive recovery interventions to restore the functionality of an interdependent
power grid and communication network, under incomplete localization of failures.
I formulate an optimization problem to stop the cascading failures and, due to
high complexity of the recovery problem, I propose two heuristic approaches (i) a
baseline greedy and (ii) a backward heuristic, to restore the power grid functionality.
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By means of extensive simulations, I show that since the backward algorithm takes
account of the combined impact of repaired component, it significantly outperforms
the baseline recovery algorithm in terms of accumulative delivered power.
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Chapter 4
Parsimonious Tomography:
Optimizing Cost-Identifiability
Trade-off for Probing-based Network
Monitoring

Network tomography using end-to-end probes provides a powerful tool for mon-
itoring the performance of internal network elements. However, active probing
can generate tremendous traffic, which degrades the overall network performance.
Meanwhile, not all the probing paths contain useful information for identifying
the link metrics of interest. This observation motivates me to study the optimal
selection of monitoring paths to balance identifiability and probing cost. Assuming
additive link metrics (e.g., delays), I consider four closely-related optimization
problems: 1) Max-IL-Cost that maximizes the number of identifiable links under
a probing budget, 2) Max-Rank-Cost that maximizes the rank of selected paths
under a probing budget, 3) Min-Cost-IL that minimizes the probing cost while
preserving identifiability, and 4) Min-Cost-Rank that minimizes the probing cost
while preserving rank. While (1) and (3) are hard to solve, (2) and (4) are easy
to solve, and the solutions give a good approximation for (1) and (3). Specifically,
I provide an optimal algorithm for (4) and a (1− 1/e)-approximation algorithm
for (2). I prove that the solution for (4) provides tight upper/lower bounds on

72



the minimum cost of (3), and the solution for (2) provides upper/lower bounds on
the maximum identifiability of (1). My evaluations on real topologies show that
solutions to the rank-based optimization (2, 4) have superior performance in terms
of the objectives of the identifiability-based optimization (1, 3), and my solutions
can reduce the total probing cost by an order of magnitude while achieving the
same monitoring performance [12].

4.1 Introduction

Today’s Internet traffic is massive, heterogeneous, and distributed, and continues to
grow in these dimensions. Therefore, unlike small-scale networks, provisioning the
desired services under an acceptable quality of service (QoS) for the ever-growing
traffic sizes is extremely challenging and depends on continuous monitoring of
the performance of individual links. Network monitoring provides the internal
network state that is crucial for many network management functions such as
traffic engineering, anomaly detection, and service provisioning. In cases where
the important performance metrics are not directly observable (e.g., due to lack of
access), network tomography [76,77] provides a solution that infers these metrics
from end-to-end probes. Compared to other monitoring techniques such as SNMP
polling, ping, or traceroute, end-to-end probes does not need any special support
from the routers [78–82] and is therefore a reliable tool for monitoring the Internet.
However, despite the considerable amount of research on estimating the individual

link’s performance metrics using given end-to-end measurements, the selection of
which paths to probe, either to minimize probing cost or to satisfy a given bound
(i.e., budget) on the probing cost, has not been thoroughly studied in prior works.
Probing all possible paths between each pair of monitors can produce a tremendous
amount of traffic in the network. Meanwhile, many paths contain redundant
information due to shared links. In this chapter, I show that by carefully selecting
the probing paths, I can significantly reduce the amount of probing traffic while
achieving the same monitoring performance.
To this end, I consider the following closely-related problems under the assumption

of additive performance metrics (e.g. delays): 1) the Max-IL-Cost problem that
maximizes the number of identifiable links under a limited probing budget, 2)
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the Max-Rank-Cost problem that maximizes the rank of probing paths under a
probing budget, 3) the Min-Cost-IL problem that minimizes the probing cost
while identifying all the identifiable links, 4) the Min-Cost-Rank problem that
minimizes the probing cost while preserving the rank. Problems (1) and (3) are
considered because they address, from different perspectives, the optimal trade-off
between monitoring performance (measured by identifiability) and probing cost.
Problems (2) and (4) are considered because they possess desirable properties that
allow efficient computation while providing good approximations to (1) and (3).
Specifically, I make the following contributions:

1. Based on an existing algorithm that computes all the minimal sets of paths to
identify each identifiable link, I convert (1) and (3) to problems similar to the
max-coverage problem [83] and the set-cover problem [84], respectively. The
conversion allows me to apply the greedy heuristic to these problems. I also
propose an iterative branch-and-bound algorithm that treats my problems as
integer linear programs (ILPs), and decomposes each problem into smaller
meaningful sub-problems to exploit parallelism on a multi-core machine.
Using my iterative branch-and-bound algorithm, I can configure the trade-off
between the execution time and the optimality gap of the solution.

2. Using techniques from matroid optimization, I give polynomial-time solutions
to (2) and (4) with guaranteed performance. The proposed solution for (4) is
provably optimal, and the solution for (2) achieves a (1− 1/e)-approximation.

3. I show that the solution for (4) provides tight upper/lower bounds for (3),
and the solution for (2) provides upper/lower bounds for (1).

4. My evaluations on real topologies show that in terms of the objectives of
(1) and (3), the solutions proposed for (2) and (4) perform very close to the
optimal and even outperform the solutions designed for (1) and (3). Compared
to the baseline of probing all the candidate probing paths, my solutions can
reduce the probing cost by an order of magnitude while achieving the same
monitoring performance.

I first discuss the background and motivation behind this work in Section 4.2.
In section 4.3, I formulate the four optimization problems. Section 4.4 contains
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my algorithms and their performance analysis. Section 4.5 shows my evaluation
methodology and results. Finally, Section 4.6 concludes the chapter.

4.2 Background and Motivation

4.2.1 Background

The problem of designing the monitoring system to optimize the trade-off between
cost and monitoring performance is a long-standing hard problem [73,85–92]. If
monitors cannot control the routing of probes, the problem is to place the minimum
number of monitors (beacons) to identify all the links, which is proved to be
NP-hard [85,86]. If monitors can control the probing paths (e.g., via source routing
or software-defined networking), the problem is to both place the minimum number
of monitors and construct the minimum number of probing paths to identify all the
links, which is polynomial-time solvable [87–89]. In contrast to [87–89], I assume
that routes cannot be controlled, as is usually the case in IP networks; in contrast
to [85,86] that focus on the offline cost for deploying monitors, I focus on the online
cost for sending probes (i.e., the probing cost).
In the context of overlay networks, Chen et al. [73] show that monitoring a set

of O(nlog(n)) paths is sufficient for monitoring an overlay network of n hosts, by
selecting a set of paths that gives a basis of all the paths between the hosts. Li et al.
propose a polynomial-time path selection algorithm that minimizes the total cost of
selected paths to cover all the links [93]. These approaches differ from mine in that
they focus on end-to-end performance, while I focus on identifying the performance
of individual links.
Zheng et al. [94] introduced a problem similar to my third optimization (Min-Cost-

IL). They study the problem of selecting the minimum number of probing paths
that can uniquely identify all the identifiable links and cover all the unidentifiable
links. My formulation differs from theirs in that I allow general probing costs for
the paths, and do not require coverage of all the links. These differences allow
me to model paths with heterogeneous probing costs and further reduce the total
cost without losing identifiability. More importantly, the solution in [94] requires
the calculation of all the irreducible path sets to identify each of the identifiable
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Table 4.1: Cost Reduction Using Selected Probing Paths

network
name

#monitors #paths total
cost

#selected
paths

cost of se-
lected paths

Abilene 11 55 244 12 46
BellCanada 20 190 4467 31 284
CAIDA 34 528 25553 56 1606

links, which has an exponential complexity. In contrast, I show that using rank as
a proxy of identifiability gives an efficient solution that provides tight upper/lower
bounds on the optimal solution (Theorem 7).

4.2.2 Motivation

I use an example to illustrate the cost saving that can be achieved by a careful
selection of probing paths. Suppose that the cost of probing a path is equal to
the total number of links on this path, which represents the amount of traffic that
each probe on this path will generate. I consider three networks from the Internet
Topology Zoo [1, 5], randomly select a subset of nodes in each network as monitors,
and compute the shortest paths between each pair of monitors as the candidate
probing paths. As shown in Table 4.1, probing all these paths generates a large
number of transmissions and incurs a high cost (total cost). In contrast, using a
selected subset of paths that preserve the rank (computed by Algorithm 7), I can
obtain the same information at a much lower cost (cost of selected paths). As is
shown, using the selected paths reduces the probing cost by a factor of 5.3–16 in
this example. The large gap between the total probing cost and the probing cost of
the given paths motivates the study of the path selection problem.

4.3 Problem Formulation

In this section, I describe the network model, performance measures and opti-
mization problems.
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4.3.1 Network Model

Given an undirected graph G(V, L), where V represents the network nodes and L
is the set of communicating links connecting the nodes, and a set of nodes M ⊆ V

employed as monitors, the set P of routing paths between all pairs of monitors
specifies the set of candidate probing paths that I can select from. In my model, I
assume IP packets from a source node s to a destination node t are being forwarded
using a pre-determined routing algorithm. My formulation and solutions support
arbitrary routing algorithms, and the specific algorithm used for evaluation will be
specified later (see Section 4.5). I denote a routing path r in G with a list of edges
r = {e1, ..., en} and denote with kr the cost of path r. Table 5.1 summarizes the
notation used in my formulation.

4.3.2 Measures of Monitoring Performance

I use identifiability and rank functions to measure the monitoring performance
of my path selection algorithms. Specifically, given a set P of all possible probing
paths (e.g., routing paths between all the monitors), let A be the routing matrix
of size |P | × |L|, such that if path r ∈ P contains link j, then A[r, j] = 1 and
A[r, j] = 0 otherwise. Then the rank of P is calculated by the rank of A, denoted
by rank(A). Let N = Null(A) denote the null space of A, i.e. for any vector
n ∈ Null(A), A · n = 0. The next lemma specifies how to compute the set of
identifiable links given A.

Lemma 3 [73] For an arbitrary routing matrix A, let N represent the null space
of A. Link li ∈ L is identifiable, if and only if ∀n ∈ N I have ni = 0.

Therefore, to find the set of identifiable links, LI ∈ L, I first compute the null
space of A and find all indices with zero values in the null space. The identifiability
achieved by probing P is then the cardinality of LI .
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Table 4.2: Notation used in my formulations.

Notation Explanation
G(V, L) an undirected graph where V represents the set of nodes

and L is the set of links
LI the set of identifiable links using all possible paths P
M set of nodes where the monitors are located
I(PR) set of all identifiable links using paths in PR

K limit on the probing cost
Pl := {Pli :
i = 1, ..., Sl}

set of all minimal solutions to link l ∈ L

Xl decision to select an identifiable link l (if Xl = 1) or not
(if Xl = 0)

Yr decision to select a path r (if Yr = 1) or not (if Yr = 0)
Zs decision to select a minimal solution s (if Zs = 1) or not

(if Zs = 0)
P the total set of uncontrollable paths using all of the

monitoring nodes M
PR a subset of all possible probing paths with indices in R
ru,v given a source node u and a destination node v and a

pre-defined routing algorithm, ru,v gives the routing path
from u to v

AR a routing matrix of size |R| × |L|, such that if path
r ∈ R contains link j, then AR[r, j] = 1 and AR[r, j] = 0
otherwise

rank(AR) the rank of routing matrix AR

kr probing cost of path r
c(PR) =∑

r∈PR kr

total cost of a set of probing paths PR ⊆ P

K limit on probing cost

4.3.2.1 Relationship between Identifiability and Rank

While identifiability is a more accurate measure of the usefulness of the paths for
network tomography, rank is easier to optimize as is shown later (see Section 4.4.2).
Below, I establish the relationship between the two measures.
Let a set P of routing paths {r1, ..., rn} be given. Corresponding to any subset

PR ⊆ P of these elements, let rank(AR) be the rank of the routing matrix corre-
sponding to the selected paths in PR. I define L1 to be any subset of identifiable
links (L1 ⊆ LI) and provide the necessary and sufficient condition for a subset of
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paths to identify all identifiable links.

Theorem 5 Let A∗,L1 be the sub-matrix of A by selecting all the columns corre-
sponding to a subset of identifiable links L1 ⊆ LI ⊆ L, and A∗,L\L1 be the sub-matrix
of A by selecting the columns corresponding to links in L \ L1. A subset of paths
PR ⊆ P with indices in R can identify all links in L1 if and only if

rank(AR,∗) = |L1|+ rank(AR,L\L1) , (4.1)

Proof of Theorem 5 I first show the necessary condition, i.e. if a set of routing
paths PR ⊆ P identifies all identifiable links in L1, then rank(AR,∗) = rank(AR,L1)+
rank(AR,L\L1) and rank(AR,L1) = rank(A∗,L1) = |L1|. Suppose that the routing
matrix AR,∗ is of size n× |L|.
Without loss of generality (WLOG), suppose that the number of identifiable links
in L1 is |L1| = k and the first k columns of AR correspond to these k identifiable
links (one can exchange the columns in AR to have this property). This means that
the reduced row echelon form of AR,∗ should be as follows:

rref(AR,∗) =
 Ik×k 0k×(|L|−k)

0(n−k)×k M(n−k)×(|L|−k)

 (4.2)

Where, Ik×k is the identity matrix and 0k×(|L|−k) and 0(n−k)×|L| are matrices con-
taining all zero entries and M(n−k)×(|L|−k) is a matrix of general values. Therefore,
the rank of AR,∗ is as follows:

rank(AR,∗) = k + rank(M) (4.3)

It is clear that:

rank(AR,L1) = k,

rank(AR,L\L1) = rank(M) (4.4)

Therefore,

rank(AR,∗) = k + rank(M) =

rank(AR,L1) + rank(AR,L\L1) (4.5)
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Next, I prove the sufficient condition, i.e. if for a selected subset of paths PR ⊆ P

(4.1) is satisfied, then, PR can solve all identifiable links.
Since rank(AR,∗) ≤ rank(AR,L1) + rank(AR,L\L1), and rank(AR,L1) ≤ |L1|, (4.1)

implies that rank(AR,L1) = |L1|, i.e., rows of AR,L1 contain a basis of the row
space of A∗,L1 . Therefore the reduced row echolen form of AR,∗ should contain the
identity matrix Ik×k as follows:

rref(AR,∗) =
 Ik×k Bk×(|L|−k)

C(n−k)×k M(n−k)×(|L|−k)

 (4.6)

I show that the submatrices Bk×(|L|−k) and C(n−k)×k must be zero matrices. If
C(n−k)×k contains a non-zero entry, I can make them zero by using a sequence of
elementary row operations. Note that (4.1) implies that

rank(rref(AR,∗)) = rank(
 Ik×k

0(n−k)×k

)+

rank(
 Bk×(|L|−k)

M(n−k)×(|L|−k)

) (4.7)

To prove that Bk×(|L|−k) = 0, I re-write the reduced row echelon form of AR,∗ as
follows:

rref(AR,∗) =
 Ik×k Bk×(|L|−k)

0(n−k)×k M(n−k)×(|L|−k)


=
 Ik×k b1 ... b|L|−k

0(n−k)×k m1 ... m|L|−k

 , (4.8)

where, bi and mi are the i-th column of Bk×(|L|−k) and M(n−k)×(|L|−k) respectively.

Let [e1, e2, ..., ek] be the columns of
 Ik×k

0(n−k)×(k)

. Also let [q1, q2, ..., q|L|−k] be the

columns of
 B

M

, where qi =
 bi

mi

.
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I define the indicator functions δi and δ′i as follows:

δi =


1, if qi is independent of

{e1, ..., ek} ∪ {q1, ..., qi−1}

0, Otherwise.

δ′i =


1, if qi is independent of

{q1, ..., qi−1}

0, Otherwise.

Lemma 4 I claim that

δi = δ′i fori = 1, ..., |L| − k, (4.9)

i.e., qi is linearly independent of {e1, ..., ek} ∪ {q1, ..., qi−1}, if qi is linearly indepen-
dent of {q1, ..., qi−1}.

To see this, I note that the left hand side (LHS) and right hand side of Equation
(4.7) are as follows:

LHS of (4.7): rank(rref(AR,∗)) = k +
|L|−k∑
i=1

δi (4.10)

RHS of (4.7): rank(rref(AR,∗)) = k +
|L|−k∑
i=1

δ′i (4.11)

It is clear that δi ≤ δ′i, ∀i = 1, ..., |L| − k, because if qi is linearly independent of
{q1, ..., qi−1}∪ {e1, ..., ek} it has to be independent of {q1, ..., qi−1} which is a subset
of the former. Thus, if ∃i ∈ {1, ..., |L| − k} such that δi < δ′i, (4.10) will be smaller
than (4.11), violating Equation (4.7). Thus, δi = δ′i,∀i = 1, ..., |L| − k. Using the
above claim, I prove bi = 0, i = 1, ..., |L| − k by induction. For i = 1, if row k + 1
in rref(AR,∗) contains a pivot in column k + 1 (i.e. q1 contains a pivot), then by
definition of the reduced row echelon form, other entries in column k + 1 should be
zero and thus b1 = 0. If row k+ 1 in rref(AR,∗) does not contain a pivot in column
k + 1 (i.e., not contain a pivot or contain a pivot in column j > k + 1), then the
non-zero entries (if any) in row k+ 1 and every row below row k+ 1 must be to the
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right of column k + 1, i.e. m1 = 0. Therefore, q1 =
 b1

m1

 is linearly dependent

with {e1, ..., ek}. By (4.9), q1 = 0 and thus b1 = 0.

For i > 1, assume bj = 0 for j = 1, ..., i − 1. If qi =
 bi

mi

 contains a pivot,

then the pivot must be in a row below row k (as (4.8) already indicates that the
pivots in rows 1, .., k appear before column qi). Thus by definition of reduced
row echelon form bi = 0. If qi does not contain a pivot, then qi can be written
as linear combination of {e1, ..., ek} and {qil}i

l=1 where il is the index for those
columns in {q1, ..., qi} which contain a pivot. Thus, qi is linearly dependent of
{e1, ..., ek} ∪ {q1, ..., qi−1}. By Lemma 4, qi is linearly dependent of {q1, ..., qi−1}.
Since bj = 0 for j = 1, ..., i− 1, bi must be zero.
Therefore, using the reduced row echolen form of AR,∗ in (4.6), each link in

L1, corresponding to one of the first k columns in rref(AR,∗), can be uniquely
determined from the set of selected paths PR. I therefore, conclude that the
necessary and sufficient condition for PR ⊆ P to identify a set of links L1 is
rank(AR,∗) = |L1|+ rank(AR,L\L1).

An illustrative example: Figure 4.1 shows an example of a network with 5 links
and four candidate monitors M = {m1, ...,m4}. Using all possible paths between
candidate monitors I have the following routing matrix.

A =

l1 l2 l3 l4 l5



1 1 0 0 0 : rm1,m2

1 0 1 0 0 : rm1,m3

1 0 0 1 1 : rm1,m4

0 1 1 0 0 : rm2,m3

0 1 0 1 1 : rm2,m4

0 0 1 1 1 : rm3,m4

A∗,L1 A∗,L\L1

The rank of this matrix is 4 while the null space shows only 3 identifiable links
l1, l2, l3. If I only probe paths in R = {rm1,m2 , rm1,m3 , rm2,m3}, the corresponding
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l4 l5

l1l2

l3
m2

m3

m6

m5

m1

m4

Figure 4.1: A simple network example with 5 links and 4 monitors {m1, . . . ,m4}.
Candidate paths: rm1,m2 , rm1,m3 , rm1,m4 , rm2,m3 , rm2,m4 , rm3,m4 .

routing matrix AR satisfies Theorem 5.

AR =

l1 l2 l3 l4 l5


1 1 0 0 0 : rm1,m2

1 0 1 0 0 : rm1,m3

0 1 1 0 0 : rm2,m3

AR,L1 AR,L\L1

Meanwhile, it is also clear that probing these paths suffices to identify l1, l2 and l3.
I can solve the identifiable links using Gaussian elimination, where the reduced row
echelon form (rref(A)) is





1 0 0 0 0 l1 : (rm1,m2 + rm1,m3 − rm2,m3)/2
0 1 0 0 0 l2 : (rm1,m2 + rm2,m3 − rm1,m3)/2
0 0 1 0 0 l3 : (rm1,m3 + rm2,m3 − rm1,m2/2
0 0 0 1 1 l4 + l5

0 0 0 0 0 0
0 0 0 0 0 0

As shown, the reduced row echelon form contains an identity matrix for columns
corresponding to identifiable links and by choosing {rm1,m2 , rm1,m3 , rm2,m3}, the
conditions of theorem 5 are satisfied. Further, the total probing cost reduces from
15 to 6.
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4.3.3 Optimization Problems

4.3.3.1 Max-IL-Cost Problem

Let I(PR) be the set of identifiable links using paths in PR and |I(PR)| be the
number of identifiable links using paths in PR. The constrained path selection
optimization problem aims at maximizing the number of identifiable links (Max-IL-
Cost) with a limited probing cost K, which can be formulated as follows:

Maximize |I(PR)| (4.12a)

subject to
∑

r∈PR

kr 6 K, (4.12b)

PR ⊆ P, (4.12c)

where kr is the probing cost of path r. As a concrete example, I can define the
probing cost of each path to be its total number of hops. Then the total probing
cost represents the total number of transmissions generated by probing the selected
set of paths.
ILP formulation for Max-IL-Cost: To better understand properties of Max-

IL-Cost, I re-write it as an integer linear programming (ILP). The basis of my
formulation is the notion of minimal solutions (simply called solutions in [94]).
Each minimal solution to link l ∈ L is a subset of paths P ′ ⊆ P such that (i)
P ′ can identify l, but (ii) no proper subset of P ′ can identify l. As an example,
consider the network in Figure 4.1. Consider the following two sets of paths
P1 = {rm1,m2 , rm1,m3, rm2,m3} and P2 = {rm2,m3 , rm2,m4 , rm3,m4}, which are both
minimal solutions to link l2.
I can compute all the minimal solutions for each link l by first finding a solution

to l and then use a linear replacement method to generate other solutions, as
described in [94]. Let Pl be the set of all the minimal solutions to link l ∈ L (Pl = ∅
if l is not identifiable). Then P = ⋃

l∈LPl := {Ps}s∈S is the collection of all the
minimal solutions for the identifiable links. For ease of presentation, I index the
solutions in P and denote by S the set of solution indices.
Based on the minimal solutions, I can write the Max-IL-Cost problem as the
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following ILP:

Maximize
Xl,Yr,Zs

∑
l∈L

Xl (4.13a)

subject toXl 6
∑

s:l∈I(Ps)
Zs, ∀l ∈ L, (4.13b)

∑
r∈P

Yr · kr 6 K, (4.13c)

Zs 6 Yr, ∀s ∈ S, r ∈ Ps, (4.13d)

Xl, Yr, Zs ∈ {0, 1}, ∀l ∈ L, r ∈ P, s ∈ S. (4.13e)

Here the binary variables Xl, Yr and Zs respectively represent the decision to select
an identifiable link (if Xl = 1), a probing path (if Yr = 1), and a minimal solution
(if Zs = 1).
First, I show that given solutions to Yr’s, the ILP is easy to solve.

Lemma 5 The ILP optimization problem can be relaxed over the integer variables
Xl and Zs and still gives an optimal integer solution.

Proof of Lemma 5 Suppose there exists an optimal solution of the LP-relaxation
of Max-IL-Cost over Zs and Xl, where ∃l ∈ L with 0 < Xl < 1. Therefore,
∃s : l ∈ I(Ps) such that Zs > 0. From (4.13-d), it implies that if Zs > 0, I must
have Yr = 1 ∀r ∈ Ps. Therefore, I can make Zs = 1, and Xl = 1 to increase the
value of the objective function without violating any constraint. This contradicts
with the assumption that this solution is optimal. Similar argument shows a
contradiction if ∃s ∈ S s.t. 0 < Zs < 1. Therefore, the optimal solution of the
LP relaxation over Zs and Xl always gives an integer solution.

Remark: While the problem can be relaxed over Xl and Zs, finding all minimal
solutions has an exponential complexity. Furthermore, similar to [94], optimizing
Yr’s is hard to solve. Therefore, I use the rank function as a proxy to identifiability
in Section 4.3.3.2 and show the upper/lower bounds for identifiability.
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4.3.3.2 Max-Rank-Cost Problem

Creating all the minimal solutions in Max-IL-Cost has an exponential complexity
which limits the scale of applicability to small networks. Therefore, I replace the
identifiability measure in this problem by rank. The resulting optimization derived
from Max-IL-Cost, referred to as Max-Rank-Cost, is formulated as follows:

Maximize rank(AR) (4.14a)

subject to
∑

r∈PR

kr ≤ K, (4.14b)

PR ⊆ P. (4.14c)

The rank function has an important property that makes its maximization easy to
solve. To this end, I introduce the following definition.

Submodularity Let P be a finite ground set. A set function f : 2P → R is
submodular if for all sets Pa, Pb ⊆ P , I have

f(Pa ∪ Pb) + f(Pa ∩ Pb) 6 f(Pa) + f(Pb). (4.15)

Intuitively, f is a submodular function if it has the property of diminishing return,
i.e., the marginal gain of adding an element e to a set Pa is at least as high as the
marginal gain of adding e to any superset of Pa.
The significance of this property is that if f(P ) is monotone (i.e., increasing as I

add elements to P ) and submodular, then there is a generic greedy algorithm in [83]
for maximizing f(P ) subject to a budget on P , which is within a (1− 1/e)-factor
of the optimal. It is known that the rank function is submodular.

Lemma 6 [95] The rank function is monotone and submodular.

However, the number of identifiable links |I(P )| is not submodular. To see this,
consider the example in Figure 4.2, which shows a network with 4 monitoring
nodes (m1, m2, m3, m4). Consider the following path sets: Pa = {l2}, and
Pb = {(l1, l2), (l3, l2)}, where (li, lj) denotes a 2-hop path traversing links li and lj.
Then it is easy to see that I(Pa) = {l2}, I(Pb) = ∅, I(Pa ∪ Pb) = {l1, l2, l3}, and
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l1
l2

l3
m1

m2

m3 m4

Figure 4.2: An example that shows identifiability is not a submodular or super-
modular function.

I(Pa ∩ Pb) = ∅. Thus,

|I(Pa ∪ Pb)|+ |I(Pa ∩ Pb)| > |I(Pa)|+ |I(Pb)|,

violating submodularity.

4.3.3.3 Min-Cost-IL Problem

The problem of preserving identifiability using minimum probing cost is the dual
of Max-IL-Cost problem. As a special case, Zheng et al. [94] considered the same
problem when kr = k (i.e. all the paths have an identical probing cost). They show
that even the special case is NP-hard by giving a reduction from set cover problem.
They proposed a heuristic-based approach to cover all links by enumerating all
possible combination of equations/paths that can cover each identifiable link. The
constructed bipartite graph is then used to select the minimum number of probing
paths that can cover all links where set cover is a special case of the problem.
They assume each probing path has the same cost, while Min-Cost-IL allows non-
uniform, heterogenous costs. Furthermore, while [94] also requires the coverage of
non-identifiable links, my proposed algorithm only selects minimal sets that identify
identifiable links. The constrained path selection optimization problem to minimize
the probing cost to identify all identifiable links (Min-Cost-IL) is formulated as
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follows:

Minimize
∑

r∈PR

kr (4.16a)

subject to |I(PR)| = |I(P )|, (4.16b)

PR ⊆ P. (4.16c)

ILP formulation for Min-Cost-IL: Similar to (4.13), I re-write Min-Cost-IL as
an integer linear programming (ILP) as follows:

Minimize
Yr,Zs

∑
r∈P

Yrkr (4.17a)

subject to 1 6
∑

s:l∈I(Ps)
Zs, l ∈ I(Ps), (4.17b)

Zs 6 Yr, ∀s ∈ S, r ∈ Ps, (4.17c)

Yr, Zs ∈ {0, 1}, ∀r ∈ P, s ∈ S. (4.17d)

The optimization minimizes the total cost of selected paths. The first constraint
indicates that at least one of the minimal solutions for each identifiable link should
be selected. The second constraint indicates that if a minimal solution is selected,
all paths in the minimal set should also be selected.

4.3.3.4 Min-Cost-Rank Problem

Similar to section 4.3.3.2, I define the Min-Cost-Rank problem as minimiz-
ing the probing cost (total hop-count) subject to preserving rank. Let P =
{r1, ..., r|M |(|M |−1)/2} be the total set of uncontrollable paths using all monitors M
and let PR ⊆ P be a subset of selected paths. I define the routing matrix AR of size
|R| × |L| to be a matrix consisting of 0 and 1s, such that if r ∈ PR contains link
j then AR[r, j] = 1 and AR[r, j] = 0 otherwise. I aim to select a subset of paths,
PR ⊆ P such that the rank of both matrices be the same.

Minimize
|M |(|M |−1)/2∑

r=1
krYr (4.18a)

subject to rank(AR) = rank(A) (4.18b)
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Yr ∈ {0, 1} (4.18c)

Where the binary variable Yr represent the decision to select a probing path r in
AR and kr is the probing cost of path r.

4.4 Path Selection Algorithms

In this section, I give different algorithms for the four optimization problems. I
propose a greedy heuristic and an iterative branch-and-bound algorithm for the
Max-Cost-IL and the Min-Cost-IL problems. I also show a greedy algorithm that
is optimal for Min-Cost-Rank and a modified greedy algorithm that achieves a
(1− 1/e)-approximation for Max-Rank-Cost.

4.4.1 Algorithms for Identifiability Optimization

4.4.1.1 Greedy-Max-IL-Cost and Greedy-Min-Cost-IL

I explain how to select a given set of paths using a set of feasible monitors and a
pre-defined routing algorithm. To compare with the existing greedy-based heuristic
which was proposed in [94], I construct a bipartite graph that reflects the coverage
of probing path and the target links. Algorithm 6 shows a greedy-based approach
for the mentioned bipartite graph model that iteratively chooses the set of paths
that can identify more links with smallest cost. At each iteration step, the algorithm
selects a minimal solution Si that maximizes the value of the following function:

New Identified Links in Si

Cost of New Paths in Si

, (4.19)

where the numerator is the number of uncovered identifiable links that can be
covered by selecting Si and the denominator is the cost of unselected paths in the
selected set Si.
Remark: Greedy-Min-Cost-IL is similar to the greedy heuristic proposed in [94]
but with two key differences. Unlike [94] that uses uniform cost for all selected
paths, I allow an arbitrary cost for each path. Furthermore, unlike [94] that requires

89



Algorithm 6: Greedy-Max-IL-Cost
Data: A set of feasible paths P , Limit on the number of paths K, Minimal

combination of path sets that can identify an identifiable link l:
Zs = {Sl l ∈ E} where Sl = {ri, ..., rj} is the set of paths that can
identify link l ∈ E

Result: A set paths PR ⊂ P that maximizes the number of identifiable links in
G(V,E), A set of identified links IL = {l ∈ E}

1 IL = ∅;
2 PR = ∅;

3 while ∃Sl ∈ Zs that (K −
|PR|∑
i=1

kri) > (Cost of New Paths in Sl) do
4 Select an un-selected set Si = argmaxNew Identified Links in Si

Cost of New Paths in Si
;

5 for i = 1 to New Identified Links(Si) IL = IL ∪ l l ∈ I(Si);
6 for rj ∈ Si

7 PR = PR ∪ {rj};
8 return IL and PR

the selected paths to cover all links, I only require the paths to identify all the
identifiable links.
I use a second greedy-based approach that I do not show (due to space limitation)

for the dual problem (Min-Cost-IL) by changing the breaking condition. The
breaking condition in line 3 of algorithm 6 is changed to while(IL 6= I(P )),
meaning that I continue adding a new probing set Si until all identifiable links are
covered.

4.4.1.2 Iterative Branch-and-Bound

The ILP formulation (4.13, 4.17) allows me to apply general ILP solvers to
Max-IL-Cost and Min-Cost-IL. Specifically, I use an iterative branch-and-bound
algorithm [40] to achieve a configurable trade-off between complexity and optimality.
For brevity, I explain the algorithm for maximization and minimization works
analogously.
The algorithm first removes the integrality restrictions. The resulting linear

programming (LP) relaxation of Max-IL-Cost has a polynomial time complexity
and gives an upper bound (UB) for the maximization. If the solution satisfies
all the integral constraints, then I have the optimal solution. Otherwise, I pick a
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fractional variable, Yr, and make two branches by creating one more constraint in
the optimization: Yr = 0 or Yr = 1. I continue this procedure by making more
branches to get closer to the optimal. The branch with the largest objective value
that satisfies all the integrality constraints is called an incumbent. Also, at any
iteration during the branch-and-bound algorithm I have a valid current upper
bound, which is obtained by taking the maximum of the optimal objective values of
all of the current leaf nodes. I stop branching once the gap between the incumbent’s
objective function (LB) and the current upper bound is smaller than a threshold
(Gap), or I can stop branching after passing a given time limit. Optimality is
achieved when the gap is zero. In the first case the algorithm gives a solution with
an approximation ratio of LB/(LB +Gap) since I have

LB

OPT
≥ LB

LB +Gap
. (4.20)

In the second case, there is no guarantee on the approximation ratio but I have a
guarantee on the execution time of the algorithm. Similarly, for a minimization
problem (e.g., Min-Cost-IL), the incumbent (the branch with the smallest objective
value and an integral solution) gives a upper bound (UB) on the optimal solution,
and the LP relaxation gives a lower bound (LB). If the algorithm stops when
UB − LB ≤ Gap, then the incumbent gives a UB/(UB − Gap)-approximation
since I have

UB

OPT
≤ UB

UB −Gap
. (4.21)

The advantage of this algorithm is its flexibility. I can control the stopping rule
of the branch-and-bound procedure to achieve trade-off between optimiality and
complexity.

4.4.2 Algorithms for Rank Optimization

In this section, I propose two greedy-based approaches, called Greedy-Min-Cost-
Rank for Min-Cost-Rank problem and Greedy-Max-Rank-Cost for Max-Rank-Cost
optimization problem. I show that in terms of the rank objective, Greedy-Min-

91



Best found feasible 

solution (LB)

Solution from LP relaxation (UB)

Gap
Feasible solutions

Figure 4.3: The iterative branch and bound algorithm that shows the gap between
the incumbent and the upper bound for Max-IL-Cost.

Cost-Rank provides an optimal solution for Min-Cost-Rank problem. In addition,
Greedy-Max-Rank-Cost gives 1− 1/e approximation for Max-Rank-Cost problem.
I first review the definition and properties of matroids [70] as they will prove

to be useful in the remainder of the chapter. Matroids play an essential role
in combinatorial optimization and provide efficient and strong tool for solving
computationally intractable problems.

Definition AMatroid is a pairM = {L, I} of a finite ground set L and a collection
I ⊆ 2L of subsets of L such that [96,97]:

• ∅ ∈ I

• ∀Ix ⊂ Iy ⊆ L, if Iy ∈ I then Ix ∈ I

• ∀Ix, Iy ∈ I , |Ix| < |Iy| → ∃r ∈ Iy \ Ix where Ix ∪ {r} ∈ I

I defineM = {P, I}, where P is the set of all paths, I contains the sets PR ⊆ P

such that paths in PR are linearly independent.
I am able to achieve optimal solution forMin-Cost-Rank and 1−1/e near-optimal
approximation solution for Max-Rank-Cost. The first is due to the fact that the
sets of linearly independent paths form a matroid, and I am selecting a basis of
this matroid with minimum cost. The approximation solution for Max-Rank-Cost
is due to the submodularity of the rank function introduced in 4.3.3.2.
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4.4.2.1 Greedy-Min-Cost-Rank

I now consider one of the interesting properties of matroids. I show that finding
a maximal basis B of matroid, I, of minimum weight can be solved optimally
using a greedy-based heuristic. The greedy-based algorithm is similar to Kruskal’s
algorithm [98] that finds a minimum spanning tree in the graph. The algorithm
iteratively adds a path with minimum cost to the set of selected paths until the
rank of the selected paths is equal to the rank of the original routing matrix.

Theorem 6 [70] For any routing path elements P and any probing cost function
ki, Greedy-Min-Cost-Rank (Algorithm 7) is optimal for Min-Cost-Rank, i.e., it
returns a basis of P with the minimum probing cost.

Complexity Analysis: Let F (|P |) be the time complexity of testing whether
a ground set is independent or not (line 5-6) which is the time complexity of
checking whether the rank function is increasing or not. The Greedy-Min-Cost-
Rank algorithm runs in O(|P |log(|P |) + |P |.F (|P |)). Using Guassian Elimina-
tion algorithm to compute the rank function [99], that has a time complexity of
min(|L|, |P |)× (|P | × |L|) the complexity of the algorithm is O(|L|2× |P |2), where
|P | = |M |×(|M |−1)

2 .

Lemma 7 If Greedy-Min-Cost-Rank returns a basis B for A∗,LI where rank(AB,L\LI ) =
0, then B is the minimum cost set of paths that identifies all identifiable links, i.e.
optimal solution to Min-Cost-IL.

Proof of Lemma 7 A path set identifies all the identifiable links if and only if it
satisfies the conditions of Theorem 5, i.e. rank(AR,∗) = |LI |+ rank(AR,L\LI ). Note
that R is a solution to Min-Cost-Rank since rank(AR,∗) = |LI | Thus, the optimal
solution to Min-Cost-IL is identical to the optimal solution to Min-Cost-Rank,
given by Greedy-Min-Cost-Rank by theorem 6.

However, if Greedy-Min-Cost-Rank returns a minimum cost basis X for A∗,LI where
rank(AX,L\LI ) = j 6= 0 and the selected paths’ cost is K1, then K1 is the lower
bound for Min-Cost-Rank.

Theorem 7 For any routing matrix A, and a set of identifiable links LI , let
Greedy-Min-Cost-Rank returns a basis BA∗,LI

for A∗,LI with the minimum cost
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KLB = k1 + k2 + ...+ k|LI |, and let Greedy-Min-Cost-Rank returns a basis BA for
the routing matrix A with the minimum cost KUB = k′1 + k′2 + ...+ k′rank(A). Also
let Kopt be the optimal cost solution of Min-Cost-IL, I have:

KLB ≤ Kopt ≤ KUB (4.22)

Proof of Theorem 7 The lower bound is obvious, since I showed that Greedy-
Min-Cost-Rank returns the optimal minimum basis for A∗,LI , there is no lower cost
set of paths that is both a basis for A∗,LI and satisfies the conditions of theorem 5.
For the upper bound, note that any basis BA for the routing matrix A identifies all
links in LI and thus has lower cost than Kopt.

Remark: Note that the difference between the lower bound KLB and the upper
bound KUB is no larger than k′|LI | + ...+ k′rank(A). Since I have more constraint for
selecting the first |LI | paths for A∗,LI than A, I always have

k′1 + k′2 + ...+ k′|LI | ≤ k1 + k2 + ...+ k|LI | (4.23)

Therefore,

KUB −KLB ≤ k′|LI | + ...+ k′rank(A)

≤ (rank(A)− |LI |) ∗ k′rank(A) (4.24)

4.4.2.1.1 Tightness of the Bound For special routing matrices, the lower or
upper bound is tight and coincides with the optimal for identifiability. To prove
that, I first construct a routing matrix where the lower bound is tight. For this
scenario, consider a routing matrix A, where the minimum cost basis BA∗,LI

for
A∗,LI does not pass any of the non-identifiable links (i.e. rank(AB,L\LI ) = 0).
In this scenario, the lower bound is tight and coincides with the optimal. The
minimum cost basis BA∗,LI

for A∗,LI returned by Greedy-Min-Cost-Rank is always
optimal for Min-Cost-IL (i.e., it identifies all links in LI with minimum cost), if
rank(ABA∗,LI

,L\LI ) = 0.
For the second scenario, I consider a network topology, where every monitor is

connected to another monitor through one hop. Therefore, routing matrix is full
rank and all links are identifiable. In this scenario, I need to select all paths to
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Algorithm 7: Greedy-Min-Cost-Rank approach for Min-Cost-Rank problem
Data: A set of uncontrollable paths P = {r1, ..., r|M |(|M |−1)/2}, a set of cost

functions for each path Cost = {k1, ..., k|M |(|M |−1)/2}.
Result: A subset of paths R∗ ⊆ P that preserves the rank, i.e.

rank(R∗) = rank(P ) with minimum probing cost.
1 P ∗R = ∅;
2 TotalCost = 0;
3 sort P in increasing order of cost ;
4 forall ri ∈ P do
5 IncreaseRankri = rank(P ∗R ∪ {ri})− rank(P ∗R) ;
6 if IncreaseRankri > 0 then
7 P ∗R = P ∗R ∪ {ri} ;
8 TotalCost = TotalCost+ ki ;
9 if rank(P ∗R) ≥ rank(P ) or |I(P ∗R)| = |LI | then

10 break ;

11 return P ∗R, T otalCost

identify all links and thus the upper bound is tight and coincides with the optimal.
The minimum cost basis BA for A returned by Greedy-Min-Cost-Rank is always
optimal for Min-Cost-IL if rank(A) = rank(BA) = |LI |.

4.4.2.2 Greedy-Max-Rank-Cost

Since the rank function is submodular, I can apply a modified greedy algorithm
called Greedy-Max-Rank-Cost that gives (1 − 1/e)-approximation of the Max-
Rank-Cost problem. Algorithm 8 shows a Greedy-Max-Rank-Cost approach that
enumerates all subsets of up to 3 paths, and iteratively augments each of these
subsets by adding one path at a time to maximize the increment in rank per
unit cost within the probing budget. The path set with the maximum rank is
then selected as the overall solution. Since the rank function is monotone and
submodular (Lemma 6), I can leverage an existing result for budgeted submodular
maximization.

Theorem 8 [83] Greedy-Max-Rank-Cost (Algorithm 8) achieves (1−1/e)-approximation
for the Max-Rank-Cost problem, i.e., the rank of its solution P is no smaller than
(1− 1/e) times the maximum rank.
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Complexity Analysis: In the worst case scenario, the algorithm has to find the
maximum increase of the rank function |P |5 times. Therefore, the complexity of
the algorithm is O(|P |5F (P )). Where F (P ) is the complexity of calculating rank
of P . Using Guassian Elimination algorithm to compute the rank function [99], the
complexity of the algorithm is O(|L|2 × |P |6).

Algorithm 8 provides upper/lower bounds on the maximum identifiability that
can be achieved under the given probing budget.

Theorem 9 Let PR be the set of paths returned by Greedy-Max-Rank-Cost for
a probing budget K, which induces a routing matrix AR,∗ and identifies IR links.
Then the maximum number of links Iopt that can be identified under budget K, given
by the optimal solution of Max-IL-Cost, is bounded by:

IR ≤ Iopt ≤ min{rank(AR,∗) ·
e

e− 1 , |LI |}, (4.25)

where LI is the set of identifiable links using all possible paths P .

Proof of Theorem 9 The lower bound IR ≤ Iopt trivially holds due to the op-
timality of Iopt. For the upper bound, I denote by R∗ the set of path indices in
the optimal solution of Max-IL-Cost. Then by Theorem 5, Iopt ≤ rank(AR∗,∗).
Meanwhile, by Theorem 8, I have that

rank(AR∗,∗) ≤ rankopt ≤ rank(AR,∗) ·
e

e− 1 , (4.26)

where rankopt is the rank of the optimal solution of Max-Rank-Cost. This gives
the upper bound on Iopt. Also, note that Iopt is always smaller than the maximum
identifiability (|LI |) using all possible paths in P .

4.5 Evaluation

In this section, I consider several scenarios to compare the probing cost of our
proposed algorithms compared to the case where I use all feasible probes or the
optimal (OPT) brute-force solution. For each scenario, I randomize the results
by running 10 different trials, where I vary the random selection of monitors from
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Algorithm 8: Greedy-Max-Rank-Cost approach for Max-Rank-Cost problem
Data: A set of uncontrollable paths P = {r1, ..., r|M |(|M |−1)/2}, a set of cost

functions for each path Cost = {k1, ..., k|M |(|M |−1)/2}, Limit on the
probing cost K.

Result: A subset of paths PMax ⊆ P that maximizes rank(PMax) subject to a
limited monitoring cost K

1 PMax2 = ∅;
2 TotalCost = 0;
3 PMax1 = argmax{rank(Px) : Px ⊆ P, |Px| ≤ 3, c(Px) ≤ K};
4 forall Pg ⊆ P, |Pg| = 3, c(Pg) ≤ K do
5 P ′ = P \ Pg;
6 P = Pg ;
7 while P ′ 6= ∅ do
8 forall ri ∈ P ′ do
9 IncreaseBonusri = (rank(PMax2 ∪ {ri})− rank(PMax2))/ki

10 rMaxIncrease = argmaxri∈P ′IncreaseBonusri

11 if kMaxIncrease + TotalCost 6 K then
12 P = P ∪ {rMaxIncrease} ;
13 TotalCost = kMaxIncrease + TotalCost ;
14 P ′ = P ′ \ ({rMaxIncrease} ∪ {r ∈ P ′ : kr > K − TotalCost})

15 if rank(P ) > rank(Pmax2) then
16 PMax2 = P

17

18 return argmaxP∈{PMax1,PMax2}rank(P )

the entire set of nodes. I implement my low cost monitoring algorithms in python
and used the Gurobi optimization toolkit, on a 120-core, 2.5 GHz, 4TB RAM
cluster [42]. I assume shortest path routing (based on hop count), with ties broken
arbitrarily.
I use different network topologies including a small, medium and a large real

topology taken from the Internet Topology Zoo [1, 5]. I also consider AS28717
(CAIDA) topology taken from the CAIDA (Center for Applied Internet Data
Analysis) resource collection [100]. The network topologies used in my evaluation
is shown in Figure 4.4. Table 5.2 shows the characteristics of the topologies used
for the evaluation.
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Table 4.3: Network characteristics used in our evaluation.

Network Name # of nodes # of edges Average Node degree
Abilene 11 14 2.5
BellCanada 48 64 2.62
CAIDA 825 1018 2.46

(a) Abilene. (b) BellCanada. (c) CAIDA.

Figure 4.4: Network topology of graphs used in the evaluation a) Abilene, b)
BellCanada and c) CAIDA topology.
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(b) BellCanada.
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Figure 4.5: Upper and lower bound on the number of identifiable links as a function
of limit on the probing cost in a) Abilene (9 monitors), b) BellCanada (10 monitors)
and c) CAIDA topology (9 monitors).

4.5.1 Identifiability Maximization

In the first set of simulations, I consider the impact of probing cost limit on
the number of identifiable links. I first compare the upper and lower bound of
Theorem 9, introduced in Section 4.4.2.2, with maximum number of identifiable
links using all candidate paths. Figures 4.5a, 4.5b and 4.5c show the lower and upper
bound on the number of identifiable links and the optimal number of identifiable
links for each topology. I note that the optimal number of identifiable links is
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Figure 4.6: Number of identifiable links as a function of limit on the probing cost
in a) Abilene (9 monitors), b) BellCanada (10 monitors) and c) CAIDA topology
(9 monitors).

always upper bounded by the minimum of (i) maximum identifiability and (ii) the
upper bound in Theorem 9. As shown, the difference between the optimal number
of identifiable links in the upper and lower bound is very small which shows that
Greedy-Max-Rank-Cost gives a solution close to optimal. Further, I note that the
lower bound is closer to the optimal and gives a tighter bound in terms of number
of identifiable links.
I next compare the number of identifiable links in Greedy-Max-IL-Cost heuristic

(Algorithm 6), Greedy-Max-Rank, and the optimal case (OPT). I use gurobi
optimization toolkit to solve the ILP problem formulation (equation 4.12). I also use
my iterative branch-and-bound algorithm and stop the search when Gap ≤ 0.5 ·LB.
I recall that, the larger the gap is, the lower is the number of iterations of the
optimization algorithm is and therefore I have an approximation of the solution
which is farther from optimal. Figures 4.6a, 4.6b and 4.6c show scenarios where
I increase the limit on the probing cost of monitors for the Abilene, BellCanada
and CAIDA topology. As I increase the probing cost limit, more links are uniquely
identified and all algorithm eventually converge to maximum identifiability, while
Greedy-Max-Rank is closest to the optimal.

4.5.2 Cost Minimization

In the next set of simulations, I evaluate the performance of Greedy-Min-Cost-
Rank algorithm that preserves rank and the greedy-based heuristics that preserve
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Figure 4.7: Probing cost vs number of feasible probing paths in a) Abilene (5-11
monitors), b) BellCanada (10-29 monitors) and c) CAIDA (9-42 monitors) topology.

 0

 10

 20

 30

 40

 50

10 15 21 28 36 45 55

 
C

o
s
t

number of candidate paths

  Lower Bound  OPT  Upper Bound

(a) Abilene.

 0
 50

 100
 150
 200
 250
 300
 350
 400

45 105 190 276 406

 
C

o
s
t

number of candidate paths

  Lower Bound  OPT  Upper Bound

(b) BellCanada.

 0

 500

 1000

 1500

 2000

 2500

36 136 300 528 861
 
C

o
s
t

number of candidate paths

  Lower Bound  OPT  Upper Bound

(c) CAIDA.

Figure 4.8: Upper and lower bound on the probing cost as a function of number
of candidate paths in a) Abilene (5-11 monitors), b) BellCanada (10-29 monitors)
and c) CAIDA (9-42 monitors) topology.
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Figure 4.9: Number of identifiable links as a function of limit on the probing cost
in a) Abilene (5-11 monitors), b) BellCanada (10-29 monitors) and c) CAIDA (9-42
monitors) topology.
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identifiability. I consider Abilene, BellCanada and CAIDA topology and run
Greedy-Min-Cost-Rank and Greedy-Min-Cost-IL algorithms that preserve rank
and identifiability respectively. I also run my branch-and-bound formulation and
stop branching once Gap ≤ 0.5 · UB. In the first set of experiments, I increase the
number of candidate paths and evaluate the cost saving of my Greedy-Min-Cost-
Rank algorithm with respect to the case where I use all candidate paths.
Figures 4.7a, 4.7b and 4.7c show the simulation results for this scenario. As

shown, probing all candidate paths generates a large amount of traffic and incurs a
high cost, while my Greedy-Min-Cost-Rank algorithm significantly reduces the cost.
I also compare the accuracy of Greedy-Min-Cost-Rank by running the algorithm
on (i) the entire routing matrix A, and (ii)a subset of the routing matrix with
columns corresponding to the set of identifiable links A∗,LI ; the former gives the
upper bound and the latter gives a lower bound on the probing cost according to
Theorem 7. Figure 4.8 shows the upper and lower bound on the probing cost as I
increase the number of candidate paths in each network topology. The simulation
results for CAIDA topology, shows that the number of identifiable links is equal
to the rank of the routing matrix A and thus the upper bound and lower bound
are equal. Therefore, the solution to Greedy-Min-Cost-Rank for this topology is
optimal. In Abilene and BellCanada topology, the lower bound and upper bound
are closer to the optimal respectively.
I next evaluate the probing cost of each algorithm compared to optimal. Fig-

ures 4.9a, 4.9b and 4.9c show the probing cost of each network topology as I increase
the number of candidate paths. As shown, my Greedy-Min-Cost-Rank algorithm is
closer to the optimal in all topologies and coincides with the optimal in CAIDA.

4.6 Conclusion

This chapter studies the optimal selection of monitoring paths to balance identifi-
ability and cost. I consider the constrained optimization problem of 1) maximizing
identifiability under limited probing budget, 2) maximizing the rank function under
a limited probing budget, 3) minimizing the probing cost subject to preserving
identifiability, and 4) minimizing the probing cost subject to preserving the rank.
While (1) and (3) are hard to solve, (2) and (4) posses desirable properties that
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allow efficient computation while providing good approximation to (1) and (3).
I proposed an optimal greedy-based approach for (4) and proposed a (1 − 1/e)-
approximation algorithm for (2). My experimental analysis reveals that, compared
to several greedy approaches, our rank-based optimization performs better in terms
of identifiability and probing cost. Furthermore, my solution can reduce the to-
tal probing cost by an order of magnitude while achieving the same monitoring
performance.

102



Chapter 5
A Minimally Disruptive Rule Update
in Software Defined Networking

This chapter addresses the problem of re-routing existing flows in a software de-
fined network to enable the admission of new flows, while minimizing the disruption
of existing flows under link capacity and Quality of Service (QoS) constraints. I
show that the update of routing rules for an existing flow can cause packet loss
and flow disruption. I aim to find paths for all active flows (including existing
and new flows) to minimize the total disruption time or the number of disrupted
flows. I formulate the problem as an integer linear programming problem and show
that it is NP-Hard. I propose two randomized rounding algorithms with bounded
congestion and demand loss to solve this problem. In addition to preliminary
experiments on an SDN testbed, I performed a large-scale simulation study to
evaluate my proposed approaches on real network topologies. Extensive simulation
results show that my two random rounding approaches have a disruption cost close
to the optimal while having a low congestion factor and a low demand loss.

5.1 Introduction

Software Defined Networks (SDN), which decouple the control plane and data
plane, provide a powerful tool for network management, traffic engineering, and
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network policy enforcement. Decoupling the control functions and data plane brings
significant advantages, including routing flexibility, being vendor agnostic, and
centralized control and programmability [101,102].
While SDN provides a rich framework for packet forwarding, forwarding rules may

change frequently due to new traffic demands, topology changes, network congestion
or failures. One of the important challenges in software defined networking is the
ability to react quickly to changing network conditions, which requires fast and
safe update of the flow table entries, without causing major disruptions to existing
flows.
Updates of flow forwarding rules in SDN are the main source of service disruption.

Rule updates occur very frequently in SDN due to the inherent flow dynamism,
and to topology changes. Rule updates can disrupt the existing traffic by causing
packet losses, delays, and security holes in the system [103–106].
While most prior works on SDN updates focus on providing consistent updates

that protect against loops and policy violations, very few consider the disruption of
communications experienced by the existing flows during the update. In general, it
is not always possible to find an update schedule that (i) preserves policy consistency,
(ii) avoids congestion during the update, and (iii) satisfies all the demands. In
this chapter, I first provide consistency using two existing approaches: (1) the
two-phase update approach [103], which I call the synchronous update approach,
and (2) the sequential update approach [107], which I call the asynchronous
update approach. In the synchronous update approach, all updates need to wait
for the slowest switch to complete the update, while in the asynchronous update
approach, each flow gets an update independent of other flows, which privileges
update time at the expense of temporary congestion and lack of consistency. I then
show the trade-off between (ii), (iii) and disruption cost.

Figure 5.1 shows an experiment that characterizes the disruption due to flow
rule update in my evaluated SDN testbed which is shown in Figure 5.1a. I first
install rules on a 24-port Brocade (ICX 6610) SDN switch to connect two hosts via
a (non-SDN) router using Route 1. Then, I update the flow table in the Brocade
switch to use Route 2. During the update, I send ICMP packets from Host1 to
Host2 to measure the round trip time (RTT). Figure 5.1b shows RTT measurements,
before, during and after the rerouting. The results show that rerouting the Host1
→ Host2 flow from Route 1 to Route 2 disrupts the flow for about 500 ms, i.e.
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Figure 5.1: Disruption caused by re-routing the existing flow to accommodate new
flows.

ICMP packets are lost during the 500 ms period.
Motivated by these observations, I propose a minimally disruptive rule update

framework that minimizes such disruptions while satisfying flow demands under
link capacity and QoS constraints. To this end, this chapter makes the following
main contributions:

• I formulate the minimally disruptive network update (Min-touch) problem
as an integer linear programming (ILP) problem that minimizes the flow
disruption and show that it is NP-Hard.

• I propose two randomized rounding algorithms, RR-Cong and RR-Demand,
which aim at solving Min-touch from different perspectives. RR-Cong solves
Min-touch with a bounded amount of congestion, and RR-Demand provides
a bounded demand loss.

• I present a simulation-based evaluation of my proposed approach based on real
network topologies and demonstrate the advantage of my proposed approach
in terms of disruption cost, compared to existing update approaches that aim
at minimizing the routing cost.

The remainder of this chapter is organized as follows. Section 5.2 discusses the
background and related works. In section 5.3, I explain the Min-touch optimiza-
tion problem and show that it is NP-Hard. Section 5.4 describes my algorithms.
Section 5.5 shows my evaluation methodology and results. Section 5.6 concludes
the chapter with a summary.
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5.2 Background and Related Work

In the SDN paradigm, the controller monitors and controls network elements and
defines forwarding rules via protocols such as the OpenFlow [108, 109]. Routing
decisions in OpenFlow switches are based on the flow tables implemented in ternary
content addressable memory (TCAM). Each entry in the flow table consists of a set
of matching rules associated with a set of actions. Openflow switches are required
to support output, drop and group actions [109]. Packets are matched based on
criteria defined in the rules of the flow tables and forwarded according to the output
action in the corresponding entry of the flow table. Packets whose output action
are not specified should be dropped. The group action processes packets based on
the specified group to support multi-path routing [105,109].
While SDN has great potential to dramatically simplify network management,

rule updates are an inseparable part of SDN network management and occur very
frequently in SDN due to arrival of new flows, termination of existing flows, and
topology changes. Service disruption and inconsistencies can occur during the
updates leading to degraded QoS or interruption of existing services. The problem
of mitigating undesirable behaviors during an update has been studied by several
works [103,106,110–118].
Reitblatt et al. propose per-packet and per-flow consistency to overcome instabil-

ities caused by network re-configuration [103,112]. Per-packet consistency ensures
that each packet follows either the old rules or the new rules. It can be implemented
by maintaining both sets of rules in the TCAM memory of the switches, a.k.a the
two-phase update approach. Per-flow consistency guarantees that all packets in
the same flow will follow the same rule version. The two-phase update approach
doubles the total precious TCAM memory usage during the update, and the update
time can be long due to the straggler switch which delays other installed rules from
becoming active [103]. However, the two-phase update approach provides strong
consistency and avoids transient congestion during the update phase.
To reduce the TCAM memory usage during rule updates, prior works studied

sequential update schedules that preserve consistency [107,110,114,119,120]. Vis-
sicchio et al. proposed a sequential update schedule for rule replacements and
additions that preserves forwarding policies [110]. While the algorithm works well
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for a single flow update, the assumption of each flow being independent of other
flows is limiting. The algorithm may cause high packet loss during the update period
due to congestion since it does not consider link capacity constraints. Further,
the algorithm does not consider the routing of flows and assumes that the routing
problem is already solved.
Ludwig et al. proposed an update schedule that preserves waypoint enforcement

and the loop-freedom property. They showed that there exists scenarios where both
properties cannot be satisfied simultaneously [107]. The algorithm considers the
update of a single flow and does not consider the conflict of flows. Vissicchio et al.
proposed an SDN update algorithm that prevents inconsistencies and preserves for-
warding policies [110]. Xu et al. proposed a joint optimization of update scheduling
and route selection [121]. Mizrahi et al., leveraged a Time Precision Protocol (TPP)
to avoid inconsistencies in SDN global updates while minimizing the transition
time [111]. Also, Katta et al. introduced an incremental network update method
with a trade-off between the update time and the TCAM space overhead [122].
Wang et al. proposed an update ordering approach that constructs a dependency
graph to avoid potential congestion and minimize the risk of deadlocks [123].
The proposed minimally disruptive update framework is built on the two ex-

isting prior works (two-phase update approach and sequential update approach)
that provide consistency with different trade-offs between the update time and
consistency level. I note that while the update time of the sequential update
approach is lower than the two-phase update approach, it does not provide as
strong a consistency level as the two-phase update approach. In contrast to the
aforementioned prior works that focused on implementing a given set of new rules,
I focus on the computation of new rules itself, while trying to minimize the cost of
implementing these rules using one of the existing update approaches.

5.3 Problem Formulation

5.3.1 Network Model

I consider the problem of minimizing the service disruption due to rule updates
on TCAM-based SDN switches from a traffic engineering perspective. Given a
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capacitated undirected graph G = (V,E), where V represents the SDN switches and
E is the set of communication links connecting the switches. I also assume having
a set of flow demands H, where each flow h has a source sh, a destination th, and
dh units of demand. Each link (i, j) ∈ E has a capacity of cij. I aim at satisfying
all demands while minimizing the disrupted services. To focus on minimizing the
disruption, I assume the demands have been filtered by proper admission control,
such that there exists at least one feasible solution which can satisfy all flows. To
differentiate existing and newly arrived flows, I use Hold to denote the set of exiting
flows, and Hnew to denote the set of new flows. I have H = Hold ∪Hnew.
Table 5.1 summarizes the notations used in my formulation.

5.3.2 Optimization Problems

I propose the minimally disruptive update problem (Min-touch) to route new
and existing flows in the network with minimum impact on the existing flows. I
present concrete formulations for two versions of Min-touch for synchronous and
asynchronous update approaches, respectively. The synchronous version assumes
that the two phase update approach [103] will be used to implement the updates, in
which all flows wait for the straggler switch to finish the update. The asynchronous
version assumes that the sequential update approach [107, 110] will be used to
implement the updates, where each flow is updated independently of the other
flows.
•Objective function: I aim to minimize the disruption cost which is formulated

with ∑h∈H δh · gh(Th), where δh is a binary variable which is 1 if flow H is re-routed,
and 0 otherwise, gh(Th) denotes the cost of disruption for flow h, and Th denotes
the disruption time of flow h. As a concrete example, I will consider linear cost,
gh(Th) = wh · Th, where wh is the priority of minimizing disruption for flow h.
As explained below, in a synchronous update approach, all flows will experience
the same disruption time, i.e. Th = T, ∀h ∈ H, where T is the time taken to
update the straggler switch. In an asynchronous update approach, each flow gets
disrupted only once and does not need to wait for the straggler switch to finish, i.e.
Th = 1, ∀h ∈ H.
Example: To clarify the trade-off between the disruption cost and number of
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Table 5.1: Notations used in my formulations.

Notation Explanation
G(V,E) an undirected graph where V represents the set of nodes

and E is the set of links
H the graph of all flow demands H = (Vh, Eh) where Eh =

{(s1, t1), ..., (sh, th)}
Hold set of flow demands that exist before the update
Hnew set of new flow service demands
cij capacity of each link (ij) ∈ E
c̃ij residual capacity of link (ij) ∈ E
Hr set of flow demands that should be re-routed according

to the new setting
bh

i the amount of flow generated/consumed by node i
kh

ij the current routing decision to use link (i, j) for flow h
(when kh

ij = 1), or not (kh
ij = 0)

xh
ij the new routing decision to use link (i, j) for flow h (when

xh
ij = 1), or not (xh

ij = 0)
δh binary variable that specifies if flow h is re-routed in the

new setting (δh = 1), or not (δh = 0)
θh binary variable that specifies if an existing flow h is not

re-routed but crosses an updated switch (when θh = 1),
or does not cross an updated switch (when θh = 0)

thi a binary variable that specifies if switch i gets updated
by flow h (when thi = 1), or not, when (thi = 0)

dh amount of demand flow for flow h

d̃h unrouted demand of flow h
wh priority of flow h
Th disruption time for flow h
Ωh QoS constraint for flow h
Ω global QoS constraint for all flows
τh duration time of flow h
gh(Th) disruption cost for flow h

hops, consider a simple example shown in Figure 5.2. The figure shows a network
with seven switches. Initially three source-destination flows, {f1 : S1 − D1, f2 :
S2−D2, f3 : S3−D3}, exist in the network with {1.1, 0.5, 0.5} units of demand
correspondingly. Consider an update where a new flow f4 with 1 unit of demand
arrives at the system. To admit the new flow, I can either (i) re-route f1 through the
upper links without disrupting f2 and f3, as in the first target state in Figure 5.2b,
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Figure 5.2: Two ways to update rules from the original state (a) to target states
that (b) increases the total hop count, or (c) causes the disruption of existing flow.

with a total of 17 hops, or (ii) re-route f2 and f3 through the lower links without
disrupting f1 and route the new flow through S4− n1− n4−D4 which requires
fewer hops (15) in the second target state in Figure 5.2c, but disrupts more flows
(f2 and f3).
The decision on which solution to use, can be based on either minimizing the

number of flows that are disrupted, or minimizing the total disruption time of
the rerouted flows. In order to update the network from the original state to the
target state, the controller updates the flow table in the corresponding switches.
Depending on the size of the flow tables and the number of rules that must be
installed, the update on each switch can take several hundreds of milliseconds to
complete, causing a long disruption of flow f1 in the first case or f2 and f3 in the
second case.
In the synchronous update approach the flow rules in n1, n2 · · · , n7 would all

be updated simultaneously. Traffic will not flow in the disrupted flows until the
last switch, the straggler switch, has completed its updates. In this case, route
consistency is guaranteed, but the disruption of all flows depends on the slowest
switch. In the asynchronous update approach, each flow gets an update independent
of the other flows. In the example of Figure 5.2, the paths of each flow are updated
in parallel, starting from the last switch in the flow. Thus, in order to update f1 in
the first case, n7, n6, n5 and n2 are updated first, while f1 continues to use its old
path, and then n1 gets updated causing a disruption to flow f1.
• Input parameters: Let bh

i be the amount of flow h generated by node i which
is bh

i = dh if i is the source node (i = sh), and bh
i = −dh, if i is a destination node

(i = dh) and bh
i = 0 otherwise. I denote kh

ij to be the existing routing decision
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Figure 5.3: Total rule installation time on a 24-port Borocade (ICX 6610) SDN
switch.

to use link (i, j) for flow h if kh
ij = 1 or not kh

ij = 0. Further, let Ωh be the QoS
threshold for flow h in terms of number of hops the solution increases the paths by
over the shortest path solution and Ω be the global QoS constraint for all flows in
terms of total number of hops the solution increases the paths by over the shortest
path solution for all flows.
• Decision variables: Let xh

ij be the new routing decision variable to use link
(i, j) for flow h when xh

ij = 1 or not xh
ij = 0. I note that flow h ∈ Hold is re-routed

if and only if ∃(i, j) ∈ E such that xh
ij = 1 and kh

ij = 0. As I already mentioned
when describing the objective function, the variable δh represents the decision to
re-route flow h in the new setting (δh = 1) or not (δh = 0). As the updates on
each switch occurs sequentially, I can only update one flow rule on each switch at a
time. I use T to denote the maximum number of updates between all switches. I
also introduce an auxiliary variable thi to specify if switch i gets updated by flow h

when thi = 1 or not thi = 0.

5.3.2.1 Minimally Disruptive Synchronous Update (Min-touch Synch)

I formulate the minimally disruptive update (Min-touch Synch) optimization
problem as follows:

minimize
∑
h∈H

δh · wh · Th
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subject to
∑
h∈H

(xh
ij + xh

ji) · dh ≤ cij, ∀(i, j) ∈ E (5.1a)
∑
j∈V

xh
ij =

∑
k∈V

xh
ki + sign(bh

i ), ∀i ∈ V, ∀h ∈ H (5.1b)

δh ≥

∑
(i,j)∈E

[xh
ij + kh

ij − 2kh
ijx

h
ij]

|E|
∀h ∈ H (5.1c)∑

(i,j)∈E

(xh
ij + xh

ji) ≤ Ωh, ∀h ∈ H (5.1d)

∑
h∈H

∑
(i,j)∈E

(xh
ij + xh

ji) ≤ Ω, (5.1e)

thi ≥

∑
j∈V

[xh
ij + kh

ij − 2kh
ijx

h
ij]

|V |
∀i ∈ V, ∀h ∈ H (5.1f)∑

h′∈H

th
′

i ≤ Th, ∀i ∈ V ∀h ∈ H (5.1g)

thi , x
h
ij, δh ∈ {0, 1}, ∀(ij) ∈ E, ∀h ∈ H ∀i ∈ V (5.1h)

Constraint 5.1a specifies that the fraction of flow that will be routed through link
(i, j) has to be smaller than or equal to the capacity of that edge. Constraint 5.1b
shows the flow balance, i.e. the total flow out of a node is equal to the summation of
total flow that comes into a node and the net flow generated/consumed at the node.
Constraint 5.1c ensures that δh is set to 1 when flow h is re-routed. Constraint 5.1d
is the per flow QoS constraint which ensures that each flow’s total number of
hops in the current routing is not greater than a threshold Ωh. Constraint 5.1e is
the global QoS constraint which ensures that the summation of total number of
hops for all flows does not exceed a threshold Ω. Constraints 5.1f ensures that thi
will be 1 if there is a rule update on switch i for flow h, and will ne 0 otherwise.
Constraint 5.1g shows the maximum update time is dominated by the straggler
switch which takes the most time to update. In words, formulation (5.1) aims at
minimizing the weighted total disruption time such that all the flows can be routed
subject to link capacity and QoS constraints.
In a synchronous update approach, I provide consistency using the two-phase

update approach as proposed in [103], and send a batch update to all switches.
In this approach all flows have to wait for the straggler switch to finish updating.
Therefore, the disruption times for all flows are the same and are equal to the
update time of the straggler switch, i.e. Th = T ∀h ∈ H.
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Figure 5.4: Dominant update time.

Figure 5.3 shows flow installation time on a 24-port Brocade (ICX 6610) com-
mercial SDN switch. As shown, when I increase the number of rules to install on
the switch from 10 to 100, the rule installation time increases linearly from 5.2 (s)
to 51.3 (s). In an example, shown in Figure 5.4, the controller sends an update to
4 SDN switches in parallel, each with a different number of rules to be installed.
The dominant update time is the switch which takes the most time to install the
scheduled update [124–128] which is switch 2 in this example.
Linearization: I consider a linear cost of disruption for each flow gh(Th) = wh ·Th,
and define a new variable ∆h = Th · δh that shows the disruption cost for each flow
due to the update. Since the objective function is non-linear, I add the following
three constraints to make the optimization problem linear. The objective function
is to minimize the total disruption cost, i.e. ∑

h∈H
wh ·∆h.

∆h ≤ δh · |H|, ∀h ∈ H (5.2a)

∆h ≥ 0, ∀h ∈ H (5.2b)

∆h ≤ Th, ∀h ∈ H (5.2c)

∆h ≥ Th − |H| · (1− δh), ∀h ∈ H (5.2d)
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5.3.2.2 Minimally Disruptive Asynchronous Update (Min-touch Asynch)

In an asynchronous update approach, each flow gets an update independent of the
other flows. Assuming the same per-rule update time on all switches, the disruption
time for all flows is the same, i.e. Th = 1, ∀h ∈ H, and the goal is to minimize
the total disruption cost. I formulate the minimally disruptive update (Min-touch
Asynch) optimization problem as follows:

minimize
∑
h∈H

δh · wh

subject to (5.1a− 5.1e), (5.3a)

xh
ij, δh ∈ {0, 1}, ∀(ij) ∈ E, ∀h ∈ H ∀i ∈ V (5.3b)

In words, formulation (5.3) aims at minimizing the weighted number of disrupted
flows such that all the flows can be routed subject to link capacity and QoS
constraints.
I have the following results for both Min-touch Synch and Min-touch Asynch.

Theorem 10 No Cycle Removal: No cycle removal is needed in the Min-touch
optimization problem.

Proof of Theorem 10 I prove by contradiction that any optimal solution con-
taining cycles has an equivalent optimal solution without cycles. Suppose that the
optimal solution contains cycles, by removing the cycles from the optimal solution
I have a solution with fewer updated switches which potentially has fewer selected
edges xijs; and therefore fewer affected flows that needs to be re-routed. Therefore,
the new optimal solution by removing the cycles is no worse than the optimal
solution with cycles.

Theorem 11 NP-Hardness: The problem Min-touch is NP-Hard.

Proof of Theorem 11 I prove that the Min-touch problem is NP-hard by giving
a reduction from the well-known edge-disjoint paths problem (EDP). In EDP,
the goal is to find a routing schedule which can simultaneously connect a set of
source/destination pairs using edge-disjoint paths in G. EDP is NP-hard even
when restricted to planar graphs [136]. An instance of EDP is specified by a set of
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demand pairs {(s1, t1), ..., (sh, th)}. The goal is to find a collection of edge disjoint
paths P1, ..., Ph such that for 1 ≤ i ≤ h, Pi is a path from si to ti.
In the following I show how I can build, in polynomial time, an instance of

Min-touch problem whose solution corresponds to the solution of the EDP problem
given above. I create one unit of demand flow for each demand pair in the supply
graph. I also assume that all edges in G have unit capacity. I assume that there
exists no current flows in the network and therefore, the problem is to satisfy all
new demands using edge-disjoint paths. I set the QoS threshold for each flow
equal to the number of edges in the network (Ωh = |E|), and the global QoS to
be Ω = |E| · |H|. Thus, the QoS constraints are set large enough such that it
does not imply any restriction on the edge-disjoint paths found. Therefore, EDP
problem changes to an instance of Min-touch problem. I can therefore conclude
the reducibility of the EDP problem to Min-touch, and consequently show that the
problem Min-touch is NP-hard.

5.3.2.3 Baseline: Min-Edge-Cost

I note that, to avoid flow disruptions, my minimum disruptive update approach
may increase the path lengths of flows. Therefore, to evaluate the increase in the
path length in my approach, I formulate a baseline problem, Min-Edge-Cost, that
finds a set of paths with the minimum number of hops to route the flows. This
problem of finding a minimum cost route for unsplittable flows is shown to be
NP-Hard [6, 129]. Nevertheless, this baseline, when solved optimally, provides a
lower bound on the routing cost (measured by hop count).

minimize
∑

(ij)∈E

∑
h∈H

(xh
ij + xh

ji)

∑
h∈H

(xh
ij + xh

ji) · dh ≤ cij, ∀(i, j) ∈ E (5.4a)
∑
j∈V

xh
ij =

∑
k∈V

xh
ki + sign(bh

i ), ∀i ∈ V, ∀h ∈ H (5.4b)

xh
ij ∈ {0, 1}, ∀(ij) ∈ E, ∀h ∈ H (5.4c)

Later, in Section 5.5, I show that Min-Edge-Cost can perform very poorly in terms
of disruption to the existing flows but provides an optimal solution in terms of
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number of hops used in my solution.

5.4 Minimum Disruptive Update Algorithms

The Min-touch problem is hard to solve optimally and efficiently as proved
in Theorem 11. Therefore, in this section, I propose two randomized rounding
algorithms that each aims at solving the problem from a different perspective. Both
algorithms are applicable to both versions of Min-touch (i.e., Min-touch Synch and
Min-touch Asynch).

5.4.1 Randomized Rounding Algorithms

In the following, I first propose a randomized rounding approach with bounded
congestion (RR-Cong). Next, I propose a randomized rounding approach with a
bounded amount of demand loss (RR-Demand). In my analysis I make use of the
following version of Chernoff Hoeffding bound.

Lemma 8 Chernoff Hoeffding bound [130] Let X = ∑n
i=1 Xi be the summa-

tion of n independent random variables Xi ∈ [0, 1] with E(Xi) ≤ µi and
∑
µi = µ.

Then, ∀ε > 0,

Pr

(
n∑

i=1
Xi ≥ (1 + ε)µ

)
≤ e

−ε2µ
2+ε (5.5)

5.4.1.1 Randomized Rounding with Bounded Congestion

I first propose a randomized rounding approach that bounds the maximum
amount of congestion on the links. Algorithm 9 shows different steps of RR-Cong
algorithm. The algorithm first solves the LP-relaxation of the Min-touch problem
whose objective value will be lower than the optimal (line 1). The LP-relaxation of
the problem gives fractional solution x̃h

ij indicating the fraction of flow h routed on
link (i, j). I then convert this solution into a set of routing paths Ph for each flow
and the fraction yh

p of flow h routed on each path p ∈ Ph (line 2).
The conversion from the link-level fractional solution in the LP-relaxation to the
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Algorithm 9: RR-Cong algorithm for Min-touch problem
1 Solve LP-relaxation of Min-touch problem.
2 Convert the solution into a set of routing path Ph for each flow h and the

routing fraction yh
p for each path p ∈ Ph.

3 for each flow h ∈ H do
4 Independently choose a path p ∈ Ph in the converted solution with

probability yh
p .

5 if min(i,j)∈p(cij) < dh then
6 drop flow h.
7 else
8 route a flow of rate dh over p .

path-level fractional solution is performed as follows. For each source-destination
pair sh-th I first find a path p from sh to th using breadth first search. Let y denote
the bottleneck residual capacity of p. I then route y units of flow on path p, i.e.
yh

p = y, and update the residual capacities by subtracting y from the residual
capacities of links on the path p. I repeat these steps until I cannot find any more
paths with positive residual capacity from sh to th. I then randomly select a path p
for flow h based on the probability of that path, yh

p , from the LP-relaxation solution
(lines 3-4). If the minimum capacity of the selected path is smaller than dh, I drop
flow h, and otherwise, I route a flow of rate dh over the selected path p (lines 5-8).
I now analyze the performance of RR-Cong in terms of the amount of congestion.

Given a link (i, j) I first define a set of independent random variables {fh
ij|h ∈ H}

where fh
ij shows the amount of flow h that crosses a link (i, j):

If dh > cij : fh
ij = 0 with probability 1,

and

If dh ≤ cij : fh
ij =

dh with probability (x̃h
ij + x̃h

ji),

0 otherrwise.

The random variables {fh
ij|h ∈ H} are mutually independent due to the independent

rounding in line 4. The expected amount of flow routed through link (i, j) is

117



computed as follows:

E
[ ∑

h∈H

(fh
ij)
]

=
∑
h∈H

E(fh
ij) ≤

∑
h∈H

dh · (x̃h
ij + x̃h

ji) ≤ cij

I define µh := dh·(x̃hij+x̃hji)
cij

+ ζ, where,

ζ := 1
|H|

1− 1
cij

∑
h∈H

dh · (x̃h
ij + x̃h

ji)
 ≥ 0 (5.7)

Then,

E
[fh

ij

cij

]
≤ µh, and,

∑
h∈H

µh = 1 (5.8)

Theorem 12 RR-Cong congestion bound Under RR-Cong, the probability of
violating the link capacity constraint for any link (i, j) by a factor of 1 + 5log(|E|)
is not more than 1/|E|2, i.e.,

Pr

∃(i, j) ∈ E :
∑
h∈H

fh
ij ≥ (1 + 5log(|E|)) · cij

 ≤ 1/|E|2 (5.9)

Proof of Theorem 12 I consider the normalized random variable fh
ij/cij which

resides in the interval [0, 1]. Assuming |E| ≥ 2 ( (5.9) holds trivially for |E| = 1), I
apply the Chernoff Hoeffding bound to the variable fh

ij/cij with ε = 5log(|E|) as
follows:

Pr

∑
h∈H

fh
ij

cij

≥ (1 + 5log(|E|))
 ≤ e

−25log2(|E|)
2+5log(|E|)

≤ e−3log(|E|) = 1/|E|3

Using the union bound for |E| random variables, the probability that the capacity
of any link is violated by a factor of at least 1 + 5log(|E|) is no more than 1/|E|2.

Remark: I note that RR-Cong does not drop any flow if the capacity of all links are
greater than or equal to the maximum demand, i.e. min(i,j)∈E(cij) ≥ maxh∈H(dh),
although some links may be congested.
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Algorithm 10: RR-Demand algorithm for Min-touch problem
1 Solve LP-relaxation of Min-touch problem with the additional constraint

x̃h
ij ≤ 1

log(|E|) ∀(i, j) ∈ E, h ∈ H.
2 Convert the solution into a set of routing path Ph for each flow h and the

routing fraction yh
p for each p ∈ Ph.

3 for each flow h ∈ H do
4 Independently choose a path p ∈ Ph in the converted solution with

probability yh
p · log(|E|).

5 if min(i,j)∈p(cij < dh) then
6 drop flow h.
7 else
8 route 1

6log(|E|) fraction of flow h over p and update the residual capacities
c̃ij ∀(i, j) ∈ p.

9 for each flow h ∈ H and its selected path ph do
10 Increase the flow rate by min(d̃h,min(i,j)∈ph(c̃ij)), where d̃h is unrouted

demand of flow h.

5.4.1.2 Randomized Rounding with Bounded Demand Loss

In this section, I propose a randomized rounding approach (RR-Demand) that
does not cause link capacity violation with high probability, but may drop a
percentage of demands. Algorithm 10 shows different steps of the algorithm. RR-
Demand first solves the LP-relaxation of the problem with an additional constraint
that each fractional link solution can only route 1

log(|E|) fraction of each flow (line 1).
This solution is then converted into a set of routing paths for each flow as explained
before (line 2). I then randomly choose a path p ∈ Ph with probability yh

p · log(|E|)
and route 1

6log(|E|) fraction of flow h over p if the bottleneck capacity of p is at
least dh; otherwise I drop flow h (lines 3- 8). After trying to route 1/(6 · log(|E|)
of demand for each flow, if the chosen path for flow h has any spare capacity, I
increase the flow rate for this flow and update the residual capacities, until there is
no more spare residual capacity for any of the flows (lines 9-10).
I show that using RR-Demand, the probability of violating any link capacity

constraint is negligible. Let me define a set of independent random variables fh
ij,
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each denoting the amount of flow h routed on link (i, j), as follows:

If dh > cij : fh
ij = 0 with probability 1,

and If dh ≤ cij :

fh
ij =


dh

6·log(|E|) with probability log(|E|) · (x̃h
ij + x̃h

ji),

0 otherrwise.

Theorem 13 RR-Demand congestion bound Under RR-Demand, the proba-
bility of violating the link capacity constraint for any link (i, j) is not more than
1/|E|2, i.e.,

Pr

∃(i, j) ∈ E :
∑
h∈H

fh
ij ≥ cij

 ≤ 1/|E|2 (5.11)

Proof of Theorem 13 I consider the normalized random variable 6·fhij
cij

which
resides in the interval [0, 1

log(|E|) ]. The expected value is computed as follows:

E
[ ∑

h∈H

(
6 · fh

ij

cij

)
]

=
∑
h∈H

E(
6 · fh

ij

cij

) ≤

∑
h∈H

1
cij

dh

log(|E|) · log(|E|) · (x̃h
ij + x̃h

ji)

≤
∑
h∈H

dh

cij

· (x̃h
ij + x̃h

ji) ≤ 1

I then apply the Chernoff Hoeffding bound to the variable 6 · fhij
cij
· log(|E|), where

µ = log(|E|) and ε = 5, as follows:

Pr

∑
h∈H

6 · fh
ij

cij

· log(|E|) ≥ (1 + 5)log(|E|)
 ≤ e

−25log(|E|)
2+5

< e−3log(|E|) = 1/|E|3

Using the union bound for |E| random variables, the probability that the capacity
of any link is violated is no more than 1/|E|2.
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Table 5.2: Network characteristics used in my evaluation.

Network Name # of nodes # of edges Average Node degree
BellCanada 48 64 2.62
CAIDA 825 1018 2.46

Therefore, by reducing the amount of routed flow on a chosen path by a factor of (6 ·
log(|E|)), RR-Demand satisfies link capacity constraints with high probability, and
if the minimum link capacity is greater than or equal to the maximum demand, i.e.
min(i,j)∈E(cij) ≥ maxh∈H(dh), I can satisfy a total demand of at least ∑h∈H dh/(6 ·
log(|E|)).

5.5 Evaluation

In this section, I evaluate my algorithms, the baseline, and the optimal solution,
under several scenarios, to compare the number of disrupted flows, congestion,
straggler’s update time, demand loss and total number of hops. For each scenario,
I randomize the results by running 20 different trials, where I vary the random
selection of demand pairs from the entire set of nodes. I implement my algorithms
in python and used the Gurobi optimization toolkit, on a 120-core, 2.5 GHz, 4TB
RAM cluster [42].
I use real Internet Service Provider (ISP) topologies including the BellCanada

topology taken from the Internet Topology Zoo [1, 5] and AS28717 topology taken
from the CAIDA (Center for Applied Internet Data Analysis) dataset [100]. Ta-
ble 5.2 shows the characteristics of the topologies used for the evaluation. Unless
otherwise specified, in all experiments, half of the demand pairs are existing flows
and the rest are new flows; also, to set the QoS constraints (Ω and Ωh) in my
evaluation, I allow a 20% QoS deviation from the shortest path routing. For most of
experiments, I only present results on the BellCanada topology below due to space
limitations, but similar observations have been made on the CAIDA topology. For
evaluation of QoS constraints in Section 5.5.3 I use the CAIDA topology, because
it provides many more paths between demand pairs.
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5.5.1 Synchronous Updates

In the first set of experiments, I use the BellCanada topology where each link’s
capacity is chosen randomly in the interval [20, 50]. Each demand pair has a flow
rate of three. I define the congestion factor to be the maximum amount of flow
divided by the capacity of the link for all links in the network. In cases where
none of the links are overloaded, the congestion factor is less than or equal to
one. I then increase the number of demand pairs from 2 to 24 and compare (i)
total number of hops, (ii) congestion factor, (ii) demand loss, and (iv) objective
function in Min-Edge-Cost, RR-Cong, RR-Demand and OPT. Figure 5.5 shows
the experimental results for this scenario. As shown, Min-Edge-Cost routes all
the flows with the minimum number of total hops but its total disruption cost is
higher than the other algorithms by a factor of three. This is due to the fact that
Min-Edge-Cost does not consider the disruption cost and the final solution reroutes
almost all existing flows to minimize the number of hops. I note that my random
rounding approaches are within 20% of shortest path in terms of path length, and
significantly minimize the disruption cost. In addition, RR-Demand satisfies all the
flows but its congestion factor can increase by a factor of two, whereas RR-Demand
loses 5% of the demands when the number of demand pairs is 24.

5.5.2 Asynchronous Updates

In this section, I use the same topology as the previous experiment with the
same units of flows. Similar to the previous experiment, I increase the number of
demand pairs from 2 to 24 and compare (i) total number of hops, (ii) Congestion
factor, (ii) demand loss, and (iv) objective function in Min-Edge-Cost, RR-Cong,
RR-Demand and OPT for the asynchronous update approach. Figure 5.6 shows the
experimental results for this scenario. It is observed the number of disrupted flows
in Min-Edge-Cost is higher than other algorithms by a factor of two. In addition,
while the number of disrupted flows in RR-Cong and RR-Demand are close to the
optimal, they have either a higher congestion factor or less satisfied demands.
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Figure 5.5: Comparison of Min-Edge-Cost (baseline), RR-Cong, RR-Demand
(proposed), and OPT (super-polynomial time): BellCanada topology, synchronous
update.

5.5.3 Quality of Service Constraint

I next evaluate the impact of QoS constraint on the average number of hops. I
use the CAIDA topology with 20 demand pairs where the flow rate of each demand
pair is set to 3, and each link’s capacity is chosen randomly in the interval [20,
50]. I first find the minimum number of hops to route each flow using shortest
path routing and increase the QoS deviation from shortest path from 10% to 60%.
Figure 5.7 shows the experimental results for this scenario for both the synchronous
and asynchronous update approach. As shown, by relaxing the QoS constraint
the total number of hops increases while the straggler’s update time decreases.
Therefore, by changing the QoS threshold, I can configure my choice of trade-offs
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Figure 5.6: Comparison of Min-Edge-Cost (baseline), RR-Cong, RR-Demand
(proposed), and OPT (super-polynomial time): BellCanada topology, asynchronous
update.

between having shorter paths or lower disruption cost.

5.5.4 Prioritizing Short-lived flows

In the next set of experiments, I consider a network with two types of flows: (i)
short-lived flows, and (ii) long-lived flows. According to [131], 80% of the flows in
a 1500-node production data center are short-lived flows that last less than ten
seconds, and 20% are long-lived. I used the same data and assume that on average,
the flow duration (τh) of long-lived flows is 100 times larger than short-lived flows,
i.e. τ long−lived

h = 100τ short−lived
h . I assume the priority of each flow to be a decreasing

function of flow duration, wh = 1/τh.
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(b) Disruption cost (synchronous).

 80

 90

 100

 110

 120

 130

 140

 10  20  30  40  50  60

T
o
ta

l H
o
p
 C

o
u
n
t 

% Deviation from shortest path

Min-Edge-Cost 

Min-touch OPT 

(c) Total number of hops (asynchronous).
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Figure 5.7: Trade-off between hop count and disruption cost/number of disrupted
flows as I increase the QoS threshold in synchronous and asynchronous update
approach: AS28717 topology.

I use the BellCanada topology where each link’s capacity is chosen randomly
in the interval [20, 50]. I consider 20 demand pairs where the flow rate of each
demand pair is set to 5. Figure 5.8 shows the percentage of disrupted short-lived
and long-lived flows for the synchronous and asynchronous update problem. As
shown, by prioritizing the short-lived flows, the algorithm disrupts fewer short-lived
flows in the both synchronous and asynchronous approaches.

5.5.5 Update Times

In this section, I use the same topology as the previous experiment with the same
number of old and new flows where the flow rate of each demand pair is set to 3. I
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Figure 5.9: Distribution of update times for all switches in the synchronous update
approach, BellCanada topology.

consider the update time among all switches in the synchronous update approach.
Figure 5.9 shows the probability distribution function of the update time among all
switches, i.e. ∑h∈H t

h
i · T ∀i ∈ V , where T is the update time for installing a single

rule on the evaluated Brocade SDN switch which is around 500 (ms). It is observed
that half of the switches have very small update time while very few switches have
higher update time. For the synchronous update approach, the slowest bottleneck
switch severely increases the disruption time. Significant variations in rule update
times are also reported in [119,132].

5.6 Conclusion

This chapter studies one of the important limitations of software defined network-
ing - fast and safe network reconfiguration with minimum disruptions to the existing
flows. I formulate the problem as an integer linear programming and show that it is
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NP-Hard. I considered two versions of the problem: (i) Min-touch synchronous, and
(ii) Min-touch asynchronous, which provide different tradeoffs between consistency
and update time. I conducted a thorough theoretical study of the Min-touch prob-
lem and proposed two efficient randomized rounding-based algorithms that solve
the Min-touch problem with bounded approximation on congestion and demand
loss. Experimental results on real network topologies demonstrated the effectiveness
of the proposed approaches in terms of disruption cost, congestion and demand loss.
The results indicate that my proposed approaches have a disruption cost close to
the optimal while having a low congestion factor and a low demand loss. Further,
by changing the QoS threshold, I can configure my choice of trade-offs between hop
count and disruption cost.
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Chapter 6
Conclusion and Future Work

In this chapter, I first summarize my research contributions toward exploring
different modeling, monitoring, scheduling and re-configuration techniques for
network recovery from massive failures. I then outline several interesting future
directions and some of the challenges and open problems that is aimed to be further
explored.

6.1 Summary of Contributions

In this dissertation, I provided comprehensive solutions to recover a network after
massive disruption. I proposed novel schemes to monitor and recover a network
under uncertain knowledge of failure while targeting four main goals: (1) minimizing
the number of necessary repaired elements, (2) minimizing the amount of demand
loss, (3) minimizing the execution time and (4) minimizing the cost of monitoring
probes. These critical goals were in conflict with each other and I studied the
trade-off among them.
In the following I summarize the main contributions of each chapter.

• Chapter 2: In this chapter, I proposed a progressive network recovery
under uncertain knowledge of damages. The problem was formulated as
a mixed integer linear programming (MILP) optimization and is shown to
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be NP-Hard. The proposed iterative stochastic recovery (ISR) approach
recovers the network in a progressive manner while satisfying the critical
service demands [9]. At each iteration step, ISR makes a decision to repair a
part of the network and gathers more information by putting a monitor on
the selected node. I proposed several algorithms to find a feasible solution set
at each iteration of the algorithm. My results show that ISR outperforms the
state-of-the-art ISP algorithm with a configurable choice of trade-off between
the execution time, number of repairs and demand loss.

• Chapter 3: I showed that the inter-connectivity and dependency between
different elements makes complex networks more vulnerable to failure [10].
I studied the inter-dependency between a power grid and a communication
network. I proposed a failure mitigation and recovery strategy that first
detects the failure and limits further propagation of the disruption by re-
distributing the generator and load’s power. I then formulated a recovery plan
to maximize the total amount of power delivered to the demand loads during
the recovery intervention. The cascade mitigation problem is formulated
as a linear programming optimization that minimizes the cost of new flow
assignment (Min-CFA) and aims at finding a DC power flow setting that
stops the cascading failure at minimum cost. The recovery phase aims at
maximizing the restored accumulative flow. I showed that the recovery
problem (Max-R) is NP-Hard and proposed heuristic recovery strategies that
work under partial knowledge of damage locations. I proposed a consistent
failure set algorithm (CFS) to locate the failures.

• Chapter 4: I studied the optimal selection of monitoring paths to balance
identifiablity and cost [12]. To this end, I considered four closely related
optimization problems: (1) Max-IL-Cost that maximizes the number of
identifiable links under a probing budget, (2) Max-Rank-Cost that maximizes
the rank of selected paths under a probing budget, (3) Min-Cost-IL that
minimizes the probing cost while preserving identifiability, and (4) Min-Cost-
Rank that minimizes the probing cost while preserving rank. I showed that
while (1) and (3) are hard to solve, (2) and (4) posses desirable properties
that allow efficient computation while providing good approximation to (1)
and (3). I proposed an optimal greedy-based approach for (4) and proposed a
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(1−1/e)-approximation algorithm for (2). Experimental analysis reveals that,
compared to several greedy approaches, the proposed rank-based optimization
performs better in terms of identifiability and probing cost.

• Chapter 5: I studied a minimally disruptive update problem in software de-
fined networks. I proposed two randomized rounding algorithms with bounded
approximation on congestion and demand loss. Extensive experimental results
on real network topologies shows the effectiveness of the proposed approach
in terms of disruption cost, congestion and demand loss.

6.2 Future Directions

I provided several solutions to network recovery after large-scale failures in a
communication network under uncertainty, and interdependent networks including
a communication and a power grid. The recovery approach and failure detection
mechanism with incomplete information is one of the first steps towards understand-
ing disruption management techniques under uncertainty and opens up the area
of designing reliable systems under incomplete on noisy information. In my most
recent ongoing research I addressed a method of updating flow rules for software
defined networks with minimum disruption to the existing flows. In the following
subsections, I outline several future works that I aim to explore in the future works
and the primary results of my ongoing research.

6.2.1 Power Grid and Communication Network Interdependency

My detection mechanism and recovery approach with incomplete information
presented in chapter 3 opens up avenues of new research on improving power grid
reliability and resiliency under incomplete or noisy information. Future research
directions include: (1) more accurate power grid representation (e.g. AC power
flow model), (2) more accurate communication network models for SCADA (e.g.
including power-line carrier) and WAMPAC, and (3) mitigating the disruptions to
electric power grids caused by malicious attacks.
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Figure 6.1: Disruption caused by delaying the existing flow due to rule updates on
a switch traversed by the existing flow.

6.2.2 Minimally Disruptive Network Updates

In chapter 5 I discussed a method to update flow rules in software defined
networking that minimizes the disruption cost of re-routed flows. In addition to
the disruption caused by re-routing existing flows, I also experienced another type
of disruption which is the disruption caused by interrupting the existing flows
due to rule updates on a switch traversed by the existing flow. For example, in
a motivating example shown in Figure 6.1a, updating the SDN switch can also
cause a delay to the existing flow f1 which is not being re-routed, but traverses the
updated switch.
Figure 6.1 shows a motivating experiment for this type of disruption. I first

install rules on a 24-port Brocade (ICX 6610) SDN commercial switch and connect
two end points. I then install 250 new rules on the SDN swicth and measure the
round trip time (RTT) delays on the existing flow, f1, while installing the new
rules. Figure 6.1 shows the cumulative distribution function of the RTT of the
existing flow before and during installing the new rules.

Since this type of disruption is very small and does not always exist in my
experiment and is very vendor-specific, I didn’t consider it in my Min-touch
problem formulation. However, as a future research direction, one can work on an
optimization problem that minimizes both types of disruptions as follows:

minimize whigh

∑
h∈H

δh + wlow

∑
h∈H

θh

subject to δh + θh < 2, ∀h ∈ H (6.1a)
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∑
h∈H

(xh
ij + xh

ji) · dh ≤ cij, ∀(i, j) ∈ E (6.1b)
∑
j∈V

xh
ij =

∑
k∈V

xh
ki + sign(bh

i ), ∀i ∈ V, ∀h ∈ H (6.1c)

δh ≥

∑
(i,j)∈E

[xh
ij + kh

ij − 2kh
ijx

h
ij]

|E|
∀h ∈ H (6.1d)

δh + θh ≥

∑
j∈V

xh
ij

|V |
+ ti − 1, ∀i ∈ V, ∀h ∈ H (6.1e)

ti ≥

∑
j∈V

∑
h∈H

[xh
ij + kh

ij − 2kh
ijx

h
ij]

|V ||H|
∀i ∈ V (6.1f)

ti ≤
∑
j∈V

∑
h∈H

(xh
ij + kh

ij − 2kh
ijx

h
ij), ∀i ∈ V (6.1g)

ti, x
h
ij, δh, θh ∈ {0, 1}, ∀(ij) ∈ E, ∀h ∈ H ∀i ∈ V (6.1h)

where δh shows if an existing flow h gets re-routed due to the new update (δh = 1)
or not (δh = 0), and θh shows if an existing flow h perceives a delay due to the
update in one of the switches which are used on the routing path in h. Since
re-routing has more impact on the existing flows, as shown in Section 5.1, I give
higher weight to the re-routed flows than the flows which use the same route but
get impacted due to a switch update whigh ≥ wlow.
The first constraint ensures mutual exclusion in counting the two types of dis-

rupted flows δh and θh. Constraint 6.1b specifies that the fraction of flow that will
be routed through link (i, j) has to be smaller or equal than the capacity of that
edge. Constraint 6.1c shows the flow balance constraint, i.e. the total flow out of a
node is equal to the summation of total flow that comes into a node and the net
flow generated/consumed at the node. Constraint 6.1d ensures that δh is set to 1
when flow h is re-routed. Constraint 6.1e together with the objective ensures that
θh will be 1 if flow h is not re-routed but crosses and updated switch. Whenever it
is possible to choose between the two different categories of "affected" flows, the
rerouted flows (captured by δh = 1) and the non-rerouted, crossing altered switches
flows (captured by θh = 1), the objective function will set θh to 1, due to the lower
weight in the linear combination for the minimization of the number of affected
flows.
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6.3 Summary

This chapter first summarizes the main contributions of this dissertation and
then outlines several interesting open problems and ongoing research.
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